Other news of interest

Fred Weber Elected to Two-Year Term as Chair of PSMA Board

The Twelve-member Board of Directors brings together industry leadership and expertise covering the gamut of technological advances impacting the power sources industry

The Power Sources Manufacturers Association (PSMA) is pleased to announce that a new slate of officers has been elected to lead its Board of Directors for the 2022-2024 term. The new officers are Fred Weber (Future Technology Worldwide), Chair; Trifon Liakopoulos (EnaChip Inc.), President; Renee Yawger (Efficient Power Conversion (EPC)), Vice President; and Tim McDonald (Infineon Technologies), Secretary/Treasurer.

Trends within The Power Electronics Industry in 2022

As is the case in many industries, power electronics has been impacted by the Covid-19 pandemic. This includes a boost in new technologies and opportunities for power designers to capitalize on the benefits of E-learning. While it is always difficult to derive trends from large industries, as we get closer to APEC 2022, as a power engineer it is interesting to take a minute to ponder and consider what will contribute to making power supplies more efficient, more reliable and exciting to design.

Overall trends and technology
A major trend that we are all aware of is the 'electrification' and transition from fossil fuels to renewable energy. There are a lot of technological innovations required in this segment to reach the carbon neutral level expected by the European Commission, US DOE and similar initiatives in Asia. If we focus on what most of the power supplies companies are developing, I foresee that four trends, all of which will benefit from the implementation of Wide Band Gap Semiconductors, will influence the power industry in 2022:

  • Reducing energy consumption
  • Power supplies becoming part of the Machine-to-Machine eco-system
  • Enhanced energy storage solutions
  • Acceleration of harvesting energy solutions,

In the quest for reduced energy consumption, from harvesting energy to the grid, the power electronics industry is seeking new long term solutions to improve efficiency. International and local regulations have already forced power supply manufacturers to innovate, and we are seeing more stringent regulations under discussion that would require the power industry to further explore new topologies, components and materials.

One example that illustrates and will benefit from this trend is E-commerce.

E-commerce was already growing before Covid-19, but as consequence of curfews, working at home, and the drastic reduction of physical interaction, it has grown exponentially, putting a high demand on shipping hubs, computerized storage and the overall supply chain. Before we even mention the associated datacenters required to manage the E-commerce process, there are the shipping hubs and warehouses that have become gigantic and consume lots of energy. Making these hubs more energy efficient has been on the agenda for all the major players, and the 2020-2021 peak on demand was a strong a signal for the need to reconsider the way to use and to manage energy.

Figure 01: Smart Power operation in Smart Factory with machine-to-machine communication (Source: PRBX)
Figure 01: Smart Power operation in Smart Factory with machine-to-machine communication (Source: PRBX)

Power supplies as such are not consuming the majority of this energy, but, when one considers their strategic position in the operational chain, they become a key point in the overall process to optimize how energy is used in the complete chain. In 2022 we will see very advanced power supplies used in E-commerce handling and shipping hubs. Not only will they integrate higher levels of communication, they will also be able to store and restore energy from supercapacitors banks, reducing peak disturbances on the grid and consumption. Already experimented with in 2021, the power supplies have been integrated into a complete eco-system with Machine-to-Machine communication (Figure 01). They not only deliver power to a load e.g. conveyor motors, but they are able to sense and adjust the level of energy to store in local supercapacitors bank (Figure 02).

Figure 02 - PRBX S-CAP BOOST supercapacitors bank with digital control and communication interface able to deliver peak energy to load and to store backward energy (Source: PRBX)
Figure 02 - PRBX S-CAP BOOST supercapacitors bank with digital control and communication
interface able to deliver peak energy to load and to store backward energy (Source: PRBX)

Almost invisible, from the RFID inserted in the shipping box that will get power from RF signals, to sensors placed on motors or moving elements powered by vibration, micro-systems powered by harvested energy are developing very quickly. Additionally, the nanotechnology, such as nanotubes, make it possible to develop very small supercapacitors able to store enough energy to power sensors and transmitters.

To make this possible, the implementation of digital power and communication is a must, but the level of performance will also require power electronics engineers to design new power solutions with the so called 'Wide Band Gap' semiconductors. Depending on the application and voltage required they may select GaN or SiC types, but the benefits of WBG will contribute to making E-commerce more energy efficient and to reducing the carbon footprint.

Critical building blocks!
For decades the improvements in energy efficiency levels of power supplies have been made possible by technological evolutions. Moving from linear to switching technology was an early major one, followed by a number of more minor leap-frogs until digital power came to market.

Despite it having been on the market for several years, with the emerging WBG technology and the possibilities offered by those components, digital control becomes an absolute MUST and I strongly believe it will be a major building block for power designers when developing new products.

For components, the WBG transistors are without doubt the ones that will prevail in 2022. That said, conventional Power FETs are also making big progress and power designers will have to achieve new levels of business assessment and acumen when selecting the most appropriate technology for their applications.

Figure 03 - PRBX multi-cores auto-tuned power converters with advanced digital control and GaN FET transistors (Source PRBX)
Figure 03 - PRBX multi-cores auto-tuned power converters with
advanced digital control and GaN FET transistors (Source PRBX)

The third building block I foresee as important is the advanced planar transformer with interleaved multi-core technology. Not all power supplies require megahertz switching but considering the constant quest for smaller power supplies with higher efficiency, power designers will have to consider new types of transformers and new winding techniques. In that respect they will not only be helped by ferrite manufacturers developing new materials but also by Artificial Intelligence software that can shorten the time to design and test new transformer types (e.g., Frenetic, Simba).

One specific example of this is research currently being conducted at PRBX, combining digital control, GaN, and multicore transformers with advanced wiring and auto-tuned performance within the wide operational range that is seen in some industrial applications that require extremely wide input voltage ranges, as well as outputs subject to repetitive peak loads. Final products while not ready yet will not be possible without the combination of digital control, WBG and advanced magnetics (Figure 03).

I believe many of the new products that we will see in 2022 and onwards will be based on these three building blocks, which I'm sure will also include more communication to become part of a Machine-to-Machine ecosystem.

In WBG we trust!
One interesting aspect about Wide Band Gap semiconductors is that we are seeing a similar situation to when the first power MOSFETs were launched. Some immediately considered the benefits of the WBG, despite early products that were based on a depletion mode that required very specific drivers  and were not very user friendly, it didn't take too long for power semiconductors manufacturers to provide 'easy-to-use' solutions.

It has now been more than five years since manufacturers first promoted the benefits of that technology but if the Go To Market is ready, the Go To Application for mass users still requires a certain amount of time.

Figure 04 - Experienced power designers have crossed that technological chasm many times, with the latest one being the migration from analog control to digital (Source: PRBX)
Figure 04 - Experienced power designers have crossed that technological chasm many times,
with the latest one being the migration from analog control to digital (Source: PRBX)

We are all familiar with the 'camel-back' curve reflecting new technology adoption and crossing the chasm. Experienced power designers have crossed that technological chasm many times, with the latest one being the migration from analog control to digital, which took more than 10 years to reach a significant level of adoption (Figure 04).

Figure 05 - Navitas' next-generation GaNFast power IC that will drive the 120W ultra-fast charger, contributing to reduce its size by 26% (Source PRBX/Navitas)
Figure 05 - Navitas' next-generation GaNFast power IC that will drive the 120W ultra-fast charger, contributing to reduce its size by 26% (Source PRBX/Navitas)
Figure 06 - Efficient Power Conversion (EPC) approach is very interesting, minimizing interconnection losses, and making it possible to shrink a power converter to an unprecedented size (Source: PRBX/EPC)
Figure 06 - Efficient Power Conversion (EPC) approach is very interesting, minimizing interconnection losses, and making it possible to shrink a power converter to an unprecedented size (Source: PRBX/EPC)
 

In the case of WBG, and especially Gallium Nitride (GaN), early adopters entered the fray much quicker than some had predicted a few years ago. It is no surprise that the PC and Mobile/Nomad industries were some of the early adopters. The number of USB-C chargers using GaN semiconductors announced in 2020-2021 is very impressive. Particularly worthy of mention is Navitas' next-generation GaNFast power IC that will drive the 120W ultra-fast charger supplied 'in-box' with vivo's iQOO-brand flagship iQOO 9 Pro mobile phone, demonstrating the rapid adoption of GaN by the 'nomad' industry. But it is not just the electrical performance, using GaN also reduces the physical size by 26%, reaching a stunning 1.3W/cc power density, which is quite incredible (Figure 05).

While it took 10 years for digital power to become a de facto technology, it took only five years for WBG to reach a similar level.

What is interesting in the development of the WBG semiconductors is that due to the specificity of this technology, with very low internal resistance and the ability to switch very fast, the packaging is very important and we see a lot of innovation from manufacturers to offer optimized solutions. Technologywise the Efficient Power Conversion (EPC) approach is very interesting, minimizing interconnection losses, and making it possible to shrink a power converter to an unprecedented size (Figure 06).

Of note is the amazing number of technical webinars held during the Covid-19 era, not to mention the virtual APEC 2021. Many companies have taken that as an opportunity for their power designers to attend online training, and as a result some power-semiconductor companies have reported shipping up to 10 times more evaluation kits than before the pandemic days.

If we simplify the market into two segments: High voltage (using SiC) and Low voltage (using GaN), we see two different patterns. High voltage applications such as electric vehicles and solar are already familiar with SiC transistors, and for that segment it is no big revolution for power engineers to undergo a learning phase for the relatively new low voltage technology.

In conclusion
In many different ways we have all been affected by the pandemic, although looking back it has contributed to a boost in learning new technology and speeding innovation. Considering all of that, 2022 will be a very important year for WBG and we can expect many new power supplies (AC/DC and DC/DC) to be announced during the year. 2022 will be a very exciting year for all of us designing power solutions.

References:
Powerbox (PRBX): https://www.prbx.com/
Navitas Semiconductors: https://navitassemi.com/
Efficient Power Conversion (EPC): https://epc-co.com/epc
Frenetic https://frenetic.ai/
SIMBA https://simba.io/
Applied Power Electronics Conferences (APEC) https://apec-conf.org/

Provided by Patrick Le Fèvre
Chief Marketing and Communications Officer, Powerbox

 

 

 

International Awards for Tyndall's MagIC Technology

Professor Cian Ó Mathúna recognized for his leadership

Professor Cian Ó Mathúna with the 2021 EARTO Innovation
Award for Impact Expected

 

One of PSMA's long-time contributors and supporters, Professor Cian Ó Mathúna, from Tyndall National Institute in Cork, Ireland has been recently named the recipient of two major international awards celebrating innovative technology created in Ireland, which could have a lasting environmental impact.

Minimizing energy consumption in electronics continues to be a major, technological challenge. Responding to this challenge, Cian, who is currently Head of MicroNano Systems at Tyndall, has, over the last 27 years, developed MagIC (Magnetics on Silicon), an innovative technology that can greatly extend the battery life of portable electronics and dramatically reduce the energy use of high-performance electronic systems and equipment.

The ground-breaking impact of the technology has been recently recognized with prestigious awards from the 400,000 member IEEE (Institute of Electrical and Electronics Engineers) and EARTO (European Association of Research and Technology Organisations).

The IEEE Power Electronics Society Technical Achievement Award for Integration and Miniaturisation of Switching Power Converters celebrates Cian's extraordinary, global influence and leadership over the last decade in bringing together the electronics industry and academia to collaborate toward the development of the Power Supply-on-Chip (PwrSoC).

Tyndall is the first Irish recipient of an EARTO Awardwhich recognizes key contributions from European research to high-impact, technological innovation. The 2021 EARTO Innovation Award for Impact Expected looks to the future and recognizes the impact Professor Ó Mathúna's research will have on the technology of the future. Including dramatically reducing system energy consumption, extending battery life and reducing the overall size, weight and cost of future electronic systems.

Tyndall's MagIC technology makes bulky magnetics components in electronic equipment to disappear onto the silicon chip, just like Gordon Moore and colleagues did with the transistor over 50 years ago. Using MagIC technology, electronics will be able to use power more efficiently by minimizing the energy wasted or lost as the battery powers the multiple-voltage rails required in multi-core microprocessor chips and/or other complex SoC chips. This improved efficiency can extend the charge time of batteries by more than 50%. The breakthrough technology will have a huge impact on markets for mobile phones, IT equipment, and any device needing a battery. It is also envisaged that the technology will deliver significant energy savings in servers in the data centre and high-performance computing space.

Professor Ó Mathúna said, "This ground-breaking and disruptive innovation is set to change the global approach to how power is managed in electronic devices and will contribute to addressing a critical environmental issue for society and our planet. We continue to partner extensively with global companies to develop and commercialize the technology which has already received more than €20M in funding from research, licensing and productization. We have joint publications with companies such as Global Foundries in Dresden and Singapore; Intel, USA; Philips in the Netherlands, TI in the USA; Wurth Electronics in Germany as well as a joint patent with Apple Computers."

Cian joined the November 2021 PSMA Board of Directors meeting and was very gracious and effusive in acknowledging the influence PSMA has had on the emergence of PwrSoC over the last 3 decades. Cian mentioned that he was first introduced to PSMA by Don Staffiere who managed to convince one of his Irish clients, Gary Duffy, then MD of Computer Products (later Artseyn Technologies) to fund Cian's attendance at the 1994 APEC. Cian came to APEC with a very limited background in power electronics but, through Don's introductions to PSMA, he began participating in the PSMA Technology Roadmap initiative, and was quickly able to leverage his expertise in microelectronics packaging which was just beginning to have a very positive impact on the miniaturization and integration of power electronics products.


Joe Horzepa, Gary Duffy, Arnold Alderman and Cian Ó Mathúna at APEC in the mid 2000s

With the support of Don Staffiere, Bob Huljak, the late Prof. William Sarjeant and the strategic guidance and wisdom of Joe Horzepa (and Judy!), Cian engaged with Arnold Alderman and Doug Hopkins to run the Packaging Technical Committee with Brian Narveson and Ernie Parker later contributing their expertise. Around 1997/98, PSMA awarded NMRC (National Microelectronics Research Centre – the precursor to Tyndall) funding to undertake a special project on the state-of-the-art in commercial 3D power electronics packaging and followed this, in 2006/2007, with funding, for Tyndall and Anagenesis, on the very first study on fully-integrated power – the visionary and seminal "PSiP2PwrSoC" project.

Looking back, Cian sees this project as the inspiration for him to establish PwrSoC, the International Workshop on Power Supply on Chip which was first held in Cork in 2008 with over 100 international participants. At PwrSoC2010, Tyndall agreed to hand over the workshop to PSMA and the IEEE Power Electronics Society from which point the Workshop has become recognized as the flagship technical forum worldwide for both industry and academia to get together to discuss both the technological and business challenges and opportunities for PwrSoC.

In his closing remarks, Cian commented "the vision and strategic perspective of PSMA, over the last 27 years, has had a dramatic impact on seeding research in power electronics, on providing a dedicated forum to gain insight into major power industry challenges and, in particular, in providing me, and the wider team at NMRC/Tyndall, with the international perspective to succeed. For all of this, I am forever in PSMA's debt."

CDE.com is the New Home for all Illinois Capacitor Products

Cornell Dubilier has brought its Illinois Capacitor brand capacitors to cde.com. Now engineers can view the entire portfolio of CDE and IC capacitors for power electronics applications on one site. This includes such specialized products as IC’s supercapacitors, conduction-cooled (high density resonant) capacitors, rechargeable coin cell batteries, and other new additions. CDE’s updated parametric search tools simplify the capacitor selection process as never before.

As Illinoiscapacitor.com has now been shut down, links to that site will be automatically redirected to cde.com. In addition to combining product data, the site’s Tech Center has been expanded to include additional engineering resources, such as application guides, capacitor formulas, tutorials, and a detailed glossary of terms.

CDE will continue to support all IC branded products, which are available from major distributors and the company’s representative network.

For more information, visit www.cde.com.

TDK Ventures invests in seed round for dry lithium-ion electrode manufacturing startup, AM Batteries

TDK Corporation announced today that subsidiary TDK Ventures Inc. invests in AM Batteries (AMB) to support the commercialization of their dry electrode coating technology that improves the manufacturing of lithium-ion batteries built on a bedrock of unmatched expertise in advanced chemistry, surface science, and precision additive manufacturing. AMB’s electrodes not only have the potential to save cost, but also offer a path toward fast charging, higher-energy density, and adaptability. AMB has early industry attraction to adopt this technology for pilot scale to mass production.

AMB has developed a novel additive Li-ion manufacturing technique by which the active materials (cathode/anode) are charged and sprayed onto metal foil current collectors, which are then processed to its final state to make batteries without the use of toxic solvent. This dry- coating method offers significant cost and energy savings over state-of-the-art “wet coating” procedures, providing a dramatic improvement to the sustainability of the overall cell making process. TDK Ventures' investment in AMB marks its continued focus on core technologies that catalyze broader decarbonization efforts via sustainable and scalable battery technologies.

“Our technology is extremely innovative and outside the box,” stated Yan Wang AMB Co-founder and CEO. “TDK Ventures’ proprietary knowledge and unique insights in the battery-manufacturing space helped validate our own technological progress. They also played a significant role in bringing a broad syndicate of financial, strategic, and OEM partners together by sharing their key techno-economic insights, thereby helping us assemble a world-class set of partners for our company.”

Riding the rising tide of EVs, the demand for lithium-ion batteries has never been higher - with an expected need for more than 2,000 GWh by 2030. With this significant manufacturing capacity demand, environmental and carbon footprint are under increased scrutiny. Current wet-electrode manufacturing techniques consume up to 50% of the total manufacturing energy of the entire battery, require significant factory footprint to dry the solvent, and increase the CAPEX required for manufacturing plants. One of the most fundamental problems for battery manufacturers today is refining manufacturing techniques. Refining manufacturing techniques to remove the solvent is one of the most fundamental problems for all battery manufacturers today in the consumer electronics, large scale energy storage, and EV markets.

During Tesla’s 2020 Battery Day last year, CEO Elon Musk said that dry-electrode technology is one of the most vital components for a step-change in the cost reduction of EV batteries; he also stated significant room for the technology’s maturation and improvement. Tesla acquired Maxwell Technologies in early 2019 with an eye on potentially commercializing their dry-electrode technology.

“AMB has engineered a three-step electro-spraying system that seamlessly aligns with the existing process flow of lithium-battery manufacturing, which is not the case in competitive solutions, putting them at the very forefront of the industry,” said Nicolas Sauvage, President of TDK Ventures. “In the future, we believe that battery manufacturers will not only differentiate on energy density, fast charge ability, or cost/kW, but also on the amount of CO2 emitted per the amount of energy stored, which is a measure of how sustainable one’s electrode manufacturing process is. This positioning is a whole new value proposition for next-generation battery manufacturers and EV OEMs that align with consumer needs.”

Eric Rosenblum, Foothill Ventures' Managing Partner commented: "The battery market for EVs is one of the world's most important markets, and this technology addresses two of the biggest issues: cost and sustainability. Dr. Yan Wang has proven himself to be one of the most successful inventors and serial entrepreneurs in the battery space, and we are also thrilled to partner again with TDK Ventures."

AMB closed its seed round of $3M in funding September 2021 with TDK Ventures and Foothill ventures co-leading the round. SAIC Capital (Tier I manufacturer), VinFast (Vietnamese EV OEM), Doral Energy-Tech Ventures (Israel Renewable Energy Company), Creative Ventures (financial VC firm from Silicon Valley) also participated in the round. In January 2020, AMB’s founders secured a $2.4M three-year research grant by the United States Advanced Battery Consortium (USABC), based on its strong foundational academic progress.

To learn more about TDK Ventures, interested startups or investment partners should visit www.tdk-ventures.com or reach out at contact@tdk-ventures.com.

PSMA White Paper - Energy Harvesting for a Green Internet of Things

This white paper, prepared by an international team of experts from diverse backgrounds, offers a broad range of insights into the world of energy harvesting, especially for IoT applications.

PSMA has announced the availability of a White Paper entitled “Energy Harvesting for a Green Internet of Things.” This seminal work is the result of a multi-month effort by a dedicated team of 28 international experts from a variety of backgrounds in academia and industry, led by Dr. Michalis Kiziroglou from Imperial College London and Dr. Thomas Becker of Thobecore Germany. The PSMA Energy Harvesting Technical Committee supported this work and is responsible for making the White Paper available.

The ubiquitous nature of energy autonomous microsystems, which are easy to install and simple to connect to a network, make them attractive in the rapidly growing Internet of Things (IoT) ecosystem. The growing energy consumption of the IoT infrastructure is becoming more and more visible and impactful. Energy harvesting describes the conversion of ambient energy into electricity, enabling green power supply of IoT key components such as autonomous sensor nodes. Energy harvesting could lead to a lower CO2 footprint of future IoT devices by adapting environmentally-friendly materials and reducing cabling and primary battery usage.

The key findings in the White Paper are as follows:

  • energy harvesting is a key enabling technology for the green Internet of Things;
  • this potential is demonstrated with several use-case studies;
  • industrial adoption is reluctant despite positive costs-benefits and their life-cycle impacts;
  • massive future deployment requires a concerted strategy in research and technology accompanied by disruptive industrial product developments and innovations.

The paper is available at no cost on the PSMA website Energy Harvesting Technical Forum at https://www.psma.com/technical-forums/energy-harvesting/whitepaper.

About PSMA: 

PSMA is a non-profit professional organization with the objective of enhancing the stature and reputation of its members and their products, and improvement of their technological power sources knowledge. Its aim is to educate the entire electronics industry, academia, government, and industry agencies as to the applications and importance of all types of power sources and conversion devices.

The Energy Harvesting Committee is one of 12 committees within PSMA that focuses on particular power electronics technologies (from materials to devices and systems) and/or applications. The committee is planning the 2022 EnerHarv Workshop at NCSU in Raleigh, NC. For more information, visit www.enerharv.com

Powerbox (PRBX) Sweden Relocates and Expands R&D in Stockholm

Powerbox, one of Europe’s largest power supply companies, and for more than four decades a leading force in optimizing power solutions for demanding applications, announces it has consolidated its Swedish operations to a new facility located at Hägersten, South of Stockholm.
 
Originally established at Gnesta (Sweden) in 1974, Powerbox (PRBX) has designed and manufactured power solutions for demanding and complex applications requiring a high level of engineering and technology.
From its inception PRBX has grown to become a leading innovator in power solutions for industrial, medical, transportation and defense application.
 
Embracing new technologies such as Wide Band Gap (WBG) semiconductors and the migration of the power supply switching technology from analog to digital control, PRBX is expanding its R&D department, taking an important step forwards to guarantee its customers the highest level of quality and performance.
 
To ensure the shortest time to market, PRBX has merged its Swedish operations to one location, optimizing workflow and communications, and offering excellent working conditions to all of its employees.
 
Located at Västberga Allé 36A – 126 30 Hägersten in a 3,000 sqm building, with a high focus level on R&D and new technologies, PRBX establishes a new home for power designers to develop the most advanced, efficient and robust power solutions that also contribute to reducing customers’ carbon footprint.
 
In making this move PRBX begins a new page in its history, strengthening its leadership position as the power supply expert for demanding applications.
 
For more information, visit www.prbx.com.
 

PSMA and IPC to Collaborate on Software/Firmware Standard

IPC in cooperation with PSMA is developing a new standard on the "Specification for Firmware Design and Test Requirements for Power Subsystem Assemblies".  The proposal for this standard is based on the "PSMA Power Supply Software/Firmware Reliability Improvement Report." This report was written as part of a special project sponsored by the PSMA Reliability Committee.

We are seeking members from PSMA and the greater power electronics community to join this effort.  Topics that are proposed to be a part of this standard include:

  • Firmware design requirements including basic function, error handling, reliability, performance, etc. This will cover basic architecture and design around that architecture as well as upgradeability. A section to be included on understanding intended application environment. 
  • Firmware test/qualification requirements to verify that the design elements are operating at minimum level. Sections would include testing to verify all critical design and application requirements. It will address exerciser code, unit test and integration topics. 
  • Firmware security for protecting against internal threats and external attack. Sections to include library verification, access to source code, physical security, plugging into the IT/OT network, user logging and tracking, virus mitigation, external access security, update/upgrade security, etc.

We are in the process of forming the committee to start drafting this standard and are seeking members interested participating and/or leading the development of various sections to be included in the document.  This is intended to be a requirements standard that can be used to define expectations for firmware design, test, and security in power assemblies and could be considered the start of a family of standards that complement the current IPC-9592B standard.  Please contact any of the following people if interested.

Jerry Strunk (Jerry.strunk@us.abb.com)
Eric Swenson (ebswensn@us.ibm.com)
Brian Zahnstecher (bz@powerrox.com)

Thank you for your consideration. We look forward to hearing from you. 

Friends of PSMA

Friends of PSMA introduces readers to organizations that PSMA has cooperative relationship with to better serve our respective memberships and the international power electronics industry. If you have suggestions on other industry organizations to consider or ways that we can improve our current relationship with other industry associations, we would be delighted to hear from you. 

In this article we introduce you to the The European Power Supply Manufacturers' Association (EPSMA).

In the year 2020, the EPSMA celebrated the 25th anniversary of its founding. It was formed from a group of European power supply manufacturers who were participating in a continuous power market survey, organized by IMS, now IHS Markit. The data from the companies was anonymized, but the group made connections with each other and saw an advantage in forming an association for their mutual benefit. IHS agreed to act as the secretariat for the group and it was formally registered as a 'European Economic Interest Group' (EEIG) in 2002. This status allowed companies who were often competitors to meet as a 'trade association' to represent the interests of their members to national bodies and to promote European power supply manufacturers overall. To be able to monitor and influence European standards relating to power supplies, the EPSMA became a CENELEC liaison organization, affiliated with technical committee TC 22X, which is responsible for standards relating to power converters. Some EPSMA members are in fact already members of TC 22X. IHS relinquished the secretariat service in 2015 and the function is now within the EPSMA organization.

Some of the initial work by the EPSMA was related to the protection of the European industry from product and component 'dumping' from the far east which was creating an unfair market with items that were not necessarily meeting acceptable quality standards. The EPSMA identified related products and informed the authorities. Another area of work was an effort to influence and mitigate the effects of the original power factor correction (PFC) requirements, that had been imposed on the industry with little warning.

EPSMA membership originally was limited to power companies headquartered in Europe, but with the globalization of the industry, this was relaxed and any power supply manufacturer or supplier to the industry can join as a full member if they have at least one full-time employee in Europe. There is also an affiliate membership category which typically includes educational establishments such as universities. The EPSMA is controlled by a management committee of around twelve members which meets four times each year, either in person or by teleconference. There is also a technical committee (TC) consisting of experts from member companies, which meets to discuss technical developments in the industry and inform the membership. The TC also generates in-depth technical documents, typically related to standards, for the guidance of members. These documents are available for non-members to purchase. The most popular over time has been the EPSMA's analysis of the PFC or 'harmonic emissions' standard with specific guidance on how to comply. This was updated in 2018 to include the most recent requirements. Other documents published include guidance for compliance with medical, rail, telecomms, DIN rail and hazardous location safety standards.

The TC has also published papers on the implications of the RoHS, WEEE directives and general power supply design guides on 'Accurate Efficiency Measurements', 'Lifetime Prediction', 'Reliability Prediction' and 'Embedded Software verification and Validation'. Some of these documents are free to download for non-members and a full list, including abstracts of 'members only' documents are available at www.epsma.org/technical-publications. The current work by the TC is focused on generating a guidance document about 'Over-voltage Categories' and their implications on power supply design.

As of today, the EPSMA has around 25 members including all of the main European power supply manufacturers. Six universities are affiliate members as is one of the European test houses. Four of the founding members remain active in the association and new members join at a steady rate. The website www.epsma.org is the portal for information on the activities of the EPSMA with member news and product press releases, information about latest publications, member job vacancies and a quarterly newsletter. There are links on the website to industry resources and indeed to the PSMA. For more information about membership or any other aspect of the EPSMA, please contact: secretariat@epsma.org.

Provided by Paul Lee, EPSMA Secretariat

Subscribe to Other news of interest