Electrical Parameter Integration

Prof. Charles R. Sullivan

chrs@dartmouth.edu

PMIC *Power Management Integration Center*

Dartmouth Magnetics and Power Electronics Research Group

THAYER SCHOOL OF ENGINEERING AT DARTMOUTH

http://dartgo.org/pmic

Types of Integration

- Multiple functions from one component.
 - Transformer "parasitic" inductances used for circuit operation, reducing component count
 - Coupled inductors to enhance circuit and magnetics performance
 - Combine L and C functions
- Integration of multiple objectives and constraints in a design process.

pmic a

"Parasitic" inductances:

Leakage

pmic 🖁

- Magnetizing
- If you need inductor(s) and a transformer, it's usually an option.
 - Leakage: for resonant converters.
 - Magnetizing: for flyback or resonant converters.
- Both can be adjusted in design.

Using transformer parasitic L

Reference: Guillod, T., Krismer, F. & Kolar, J.W. "Magnetic Equivalent Circuit of MF Transformers: Modeling and Parameters Uncertainties," Electr Eng (2018) 100: 2261. https://doi.org/10.1007/s00202-018-0701-0

Matrix vs. T-model

 Both capture full behavior (Assuming linear, lossless, and no capacitance)

5) **(**22)

- Matrix: 3 degree of freedom vs. Transformer: 4 degrees of freedom.
 - Can choose one parameter arbitrarily.
 - Common choice:
 - n = the physical turns ratio.

- Coupling factor *k*
- Good simplification?
- Definition: ratio of mutual to self inductance. Specifically,

the geometric mean: $k = M / \sqrt{L_p L_s}$

Problems with k:

Spec calls for high k_i a transformer with "high coupling":

- Might mean low leakage is needed
- Or, might mean high magnetizing inductance is needed.
- If you improve the wrong one, you can get high k without meeting the real spec.

No.

Spec what you want: high or low L_m ; Improve k? high or low L_ℓ .

- "A high-permeability core improves coupling factor".
 - It increases magnetizing inductance, but does not reduce leakage.
- "A bifilar winding improves coupling factor".
 - It increases magnetizing inductance, but does not reduce leakage.
- If you ask for high k (or low k), you might not get what you really need.

Air-core transformers and wireless power systems:

- Without saturation or (much) core loss, N (number of turns) can be chosen without considering B. Changing N just scales all impedances.
- If k is good (what that means depends on the application), adjusting N allows setting both L_{ℓ} and L_m values to meet the spec.

Design process:

- Vary geometry to get k you want.
- Vary N to get the right L_{ℓ} and L_m values.

http://dartgo.org/PMIC

য়**শু**শ্ব

pmic 🖁

8

Example where k is misleading

Coupled inductor multi-phase buck.

- Early insight: coupling can help.
- Naïve design approach: Find optimal value of k ... but arbitrarily holding L_{self} constant.

Example where k is misleading

Coupled inductor multi-phase buck.

- Early insight: coupling can help.
- Naïve design approach:
 Find optimal value of k ...
 but arbitrarily holding L_{self} constant.
 - Low k means no benefit, but high k would mean low leakage and excessive ripple: chose moderate k.

Better approach:

ଅଙ୍କର୍ଯ୍ଭ

pmic

Consider $L_{\rm M}$ and $L_{\rm leak}$ independently.

- Maximize L_M: ungapped structure.
- Choose L_{leak} based on ripple, transient, and size trade-offs—all mitigated by coupling.

- L_m is easy: add a gap or adjust the gap to hit the target value.
 - Tradeoffs between core loss, winding loss, and saturation effected via gap and number of turns, as in standard inductor design.
- L_{ℓ} design can be more challenging...

Design for L_{ℓ}

- For low L_{ℓ}
 - Interleaving (respect symmetry) and/or large winding breadth *b*.
 Limitation: capacitance.
 - Fewer turns: need larger core area to limit flux density for saturation and core loss.

Performance improvement

• For higher L_{ℓ}

- Winding configuration
- Add a shunt
- Use more turns--reduced core loss mitigates increased winding loss.

Functional integration

pmic Shunt to add leakage

- Adjust gaps to get any L_{ℓ} value.
- Fringing flux increases winding loss: in this design mitigated by carefully chosen litz wire.
- Or, stack multiple thin shunt toroids to get "quasi distributed gap".
- Consider cooling for floating shunt.

http://dartgo.org/PMIC

500°C

Winding orientation effect

- Sectional wound gives much higher leakage.
- Can tune winding build and spacing to set leakage.

pmic

$$L_{leak,p} = \frac{k_L}{b_w} \left(h_w - \left(\frac{2}{3}\right) h_{ps} \right)$$
$$k_L = \mu_0 N_p^2 \ell_{turn} \qquad h_{ps} = h_p + h_s$$

Barrel wound

What if the spec is between these peaks?

Comments on integrating inductive functions

- Design for the L_m and L_ℓ you want, separately, rather than looking at k.
- L_m is easily adjusted with a gap.
- L_{ℓ} can be reduced with interleaving, limited only by capacitance, and with larger A_{c} to allow small N.
- L_{ℓ} can be increased with a shunt or with a "sectional" winding arrangement.
 - Partial interleaving can adjust leakage without hurting R_{ac} .

Integration of capacitance

- Proliferation of types of resonant converters.
- Need C and well as L.

- Magnetic components have dielectrics in them anyway—can we use these to form the capacitor(s) for a resonant converter?
 - Yes, we can: has been demonstrated back in the 1990s by Ferreira, Van Wyk, and others.
 - But is it useful to do so?
 - Capacitors are cheap and have low loss anyay.
 - What if combining L and C could improve *magnetics* performance?

http://dartgo.org/PMIC

For excellent low ac resistance we need conductor dimensions << skin depth δ

- Litz wire is great, but
 - It's expensive
 - For excellent MHz performance we want dimensions smaller than the ~40 µm of fine litz strands.
 - We want < 20 μm, or even < 5 μm

Foil: < 20 μ m at low cost

- Easy to get thickness << skin depth.
 - Freestanding foil down to ~ 6 μm.
 - On plastic-film substrates for easier handling down to << 1 μm.
- Thin layers have high dc resistance need many in parallel.
- Challenges:

- Achieving uniform current density—laterally and among layers.
- High capacitance between layers.
- Terminations

Overlapping insulated layers create series capacitance for each layer.

Cartoon—not actual design

- Capacitive ballasting forces equal current sharing.
- Goal in previous integrated LC structures: combine functions in single volume.
- Our goal: Not just integration, but creating a new type of ultra-low-loss winding.
- Best application fit: resonator (LC tank).

Capacitively ballasted multilayer selfresonant structure (MSRS)

Multilayer self-resonant structure (MSRS) functionality

- Stack of LCC resonator loops
- All magnetically coupled.
- Solves coil challenges and achieves very high Q
 - Thin foils minimize skin & proximity effects
 - No additional losses in capacitor plates.
 - No vias or high-current or voltage terminations.

Equivalent Circuit

*9 patents pending or granted

Example implementation

6.6 cm

- Q = 1699
- Figure of merit $Q_d = \frac{Q}{d} = 257 \text{ cm}^{-1}$
- 6X highest Q_d in the literature.

Example implementation

- Figure of merit $Q_d = \frac{Q}{d} = 257 \text{ cm}^{-1}$
- 6X highest Q_d in the literature.

Example implementation

19 mm

- Q = 1699
 - 6X highest Q_d in the literature: $Q_d = \frac{Q}{d} = 257 \text{ cm}^{-1}$
- 1 kW at 19 mm,
 95% dc-dc efficiency

Scales for different applications developed by Resonant Link, Inc.

Maximum Power Delivered (W)

 Low temperature rise and low tissue heating enables applications that couldn't be done before.

http://dartgo.org/PMIC

- 19.2 kW, 400 A output
- Air gap up to 10"
- Misalignment +/- 6"

Self resonant components as power-conversion passives

High-density resonant structure, ~1.2 cm³

- 0.5 m Ω ESR in a 250 V dc rated component.
- Without considering any limitations of today's power switches, over 10 kW would be possible at over 99% efficiency.

High-Q MLCC-winding components

- Developed for wireless power transfer, Q = 675~1699
- More flexibility to match circuit applications.

- Merged multiphase LC resonator on-chip
- Capacitive ballasting \rightarrow uniform current \rightarrow decreases ESR

Prescott McLaughlin, Ziyu Xia, Jason Stauth, ISSCC 2020

Merged and fully integrated—results

- 49.1% efficiency enhancement over LDO
- 2.4–4.4 V in, 1–2.2 V out, 870 mW, 48 MHz
- 85.5% peak efficiency

10°°A

97 mW/mm² (chip area); 267 mW/mm² (resonator area)
 Prescott McLaughlin, Ziyu Xia, Jason Stauth, ISSCC 2020

Electrical Parameter Integration

- Design for the L_m and L_ℓ you want, separately, rather than looking at k.
- Integrating functions can be nice, but look for bigger benefits to make it worthwhile:
 - Coupled inductors that circumvent the transient response/ripple tradeoff while reducing size, loss and energy storage.
 - LC structures that use C not only to resonate, but also to ballast current, sharing it between parallel paths, without the twisting used in litz wire.

Shape optimization

Windings

Free shape concept

Magnetic

Core

Add-constraints:

- Drop-in wire for winding
- Two-piece core

Calculated design

Free shape optimization?

- Optimize air-core inductor on PCB
- OK, we do need constraints:
 - Any 2D shape on each layer + vias.
 - But must be valid—ended up needing 14 rules.
- Also need a fast field solver: FFT Accelerated PEEC method: open source code available.
- Details: presentation by Dr. Thomas Guillod, 11:30 on Th, T36.5 room A312

http://dartgo.org/PMIC

<u> 3</u> **6 3 6**

pmic

http://dartgo.org/PMIC

Optimizer Convergence

pmic Add col	nstraints: terminal lo	cation and exte	rnal field limit
	Without Near-Field Opt.		With Near-Field Opt.
Total Efficiency	80.8%	- 2%	78 . 9 %
Inductor Efficiency	89 . 7 %		88 . 1 %
DC Near-Field	1247 A/m	0.45x	441 A/m
AC Near-Field	660 A/m		300 A/m

Shape optimization is very powerful for addressing constraints

- Electrical Parameter Integration
 - Design for L_m and L_ℓ
 - Look for benefits beyond parts count
- Shape optimization
 - New capabilities emerging.
 - Presentation by Dr. Thomas Guillod, 11:30 on Th, T36.5 room A312