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Types of Integration
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 Multiple functions from one component.

 Transformer “parasitic” inductances used for 

circuit operation, reducing component count

 Coupled inductors to enhance circuit 

and magnetics performance

 Combine L and C functions

 Integration of multiple 

objectives and 

constraints in a 

design process. 



Using transformer parasitic L

 “Parasitic” inductances:

 Leakage

 Magnetizing

 If you need inductor(s) and a 

transformer, it’s usually an option.

 Leakage: for resonant converters.

 Magnetizing: for flyback or resonant converters.

 Both can be adjusted in design.
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Matrix vs. T-model

 Both capture full behavior

(Assuming linear, lossless, 

and no capacitance)

 Matrix: 3 degree of freedom vs.

Transformer: 4 degrees of freedom.

 Can choose one parameter arbitrarily.

 Common choice: 

n = the physical turns ratio.

Reference: Guillod, T., Krismer, F. & Kolar, J.W. “Magnetic Equivalent Circuit of MF Transformers: Modeling and 
Parameters Uncertainties,” Electr Eng (2018) 100: 2261. https://doi.org/10.1007/s00202-018-0701-0
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Coupling factor k

 Good simplification?  

 Definition: ratio of mutual to self inductance. 

Specifically, 

the geometric mean: k = 𝑀/ 𝐿𝑝𝐿𝑠

 Problems with k :

Spec calls for high k, a transformer with “high coupling”: 

 Might mean low leakage is needed 

 Or, might mean high magnetizing inductance is needed.

 If you improve the wrong one, you can get high k without meeting the real spec.       
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Improve k?

 “A high-permeability core improves coupling factor”.

 It increases magnetizing inductance, but does not 

reduce leakage.

 “A bifilar winding improves coupling factor”.

 It increases magnetizing inductance, but does not 

reduce leakage.

 If you ask for high k (or low k), you might not get 

what you really need.
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Spec what you want: high or low Lm ;
high or low Lℓ .



An exception: when k is useful.

Air-core transformers and wireless power systems: 

 Without saturation or (much) core loss, N (number of turns) can be 

chosen without considering B.  Changing N just scales all impedances.

 If k is good (what that means depends on the application), adjusting N

allows setting both Lℓ and Lm values to meet the spec.

 Design process: 

 Vary geometry to get k you want.

 Vary N to get the right Lℓ and Lm values.

http://dartgo.org/PMIC 7



Example where k is misleading
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Coupled inductor multi-phase buck.

 Early insight: coupling can help.

 Naïve design approach: 

Find optimal value of k … 

but arbitrarily holding Lself constant.
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Example where k is misleading
Coupled inductor multi-phase buck.

 Early insight: coupling can help.

 Naïve design approach: 

Find optimal value of k … 

but arbitrarily holding Lself constant.

 Low k means no benefit, but high k would 

mean low leakage and excessive ripple: 

chose moderate k.

 Better approach: 

Consider LM and Lleak independently.

 Maximize LM:  ungapped structure.

 Choose Lleak based on ripple, transient, and 

size trade-offs—all mitigated by coupling.
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Separately design for Lm and Lℓ

 Lm is easy: add a gap or adjust the gap to hit 

the target value.

 Tradeoffs between core loss, winding loss, and 

saturation effected via gap and number of 

turns, as in standard inductor design.

 Lℓ design can be more challenging…
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Design for Lℓ

 For low Lℓ

 Interleaving (respect symmetry) 

and/or large winding breadth b.   

Limitation: capacitance.

 Fewer turns: need larger core 

area to limit flux density for 

saturation and core loss.
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 For higher Lℓ

 Winding configuration

 Add a shunt

 Use more turns--reduced 

core loss mitigates 

increased winding loss.

Performance improvement                             Functional integration



Shunt to add leakage

 Adjust gaps to get any Lℓ value.

 Fringing flux increases winding loss: in 
this design mitigated by carefully 
chosen litz wire.

 Or, stack multiple thin shunt toroids 
to get “quasi distributed gap”.

 Consider cooling for 
floating shunt.
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Winding orientation effect

 Sectional wound gives much higher leakage.

 Can tune winding
build and spacing 
to set leakage.
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Design options
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Interleaved
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What if the spec is between these peaks?
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Comments on integrating inductive functions

 Design for the Lm and Lℓ you want, separately, 

rather than looking at k.

 Lm is easily adjusted with a gap.

 Lℓ can be reduced with interleaving, limited only by 

capacitance, and with larger Ac to allow small N.

 Lℓ can be increased with a shunt or with a “sectional” 

winding arrangement. 

 Partial interleaving can adjust leakage without hurting Rac.
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Integration of capacitance

 Proliferation of types of resonant converters.

 Need C and well as L.

 Magnetic components have dielectrics in them anyway—can we 

use these to form the capacitor(s) for a resonant converter?

 Yes, we can: has been demonstrated back in the 1990s by 
Ferreira, Van Wyk, and others.

 But is it useful to do so?  

 Capacitors are cheap and have low loss anyay.

 What if combining L and C could improve magnetics
performance?
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 Litz wire is great, but

 It’s expensive

 For excellent MHz 
performance we want 
dimensions smaller than 
the ~40 μm of fine litz 
strands.

 We want < 20 μm, 
or even < 5 μm 

For excellent low ac resistance we need 
conductor dimensions << skin depth δ
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Foil: < 20 µm at low cost

 Easy to get thickness << skin depth.
 Freestanding foil down to ~ 6 µm.

 On plastic-film substrates for easier handling down to << 1 μm.

 Thin layers have high dc resistance—
need many in parallel.

 Challenges:
 Achieving uniform 

current density—laterally and among layers.

 High capacitance between layers.

 Terminations
19



One concept for MHz foil windings: 
capacitive ballasting

 Overlapping insulated layers create series capacitance for each layer.

 Capacitive ballasting forces equal current sharing.

 Goal in previous integrated LC structures: 
combine functions in single volume.

 Our goal: Not just integration, but creating a  
new type of ultra-low-loss winding.

 Best application fit: resonator (LC tank).

Port 1

Cartoon—not actual design
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Can we make an inductor coil out of this?
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Port 1



Can we make an inductor coil out of this?
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Can we make an inductor coil out of this?
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Capacitively ballasted multilayer self-
resonant structure (MSRS)
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Equivalent Circuit

MSRS
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Multilayer self-resonant structure (MSRS) 
functionality

• Stack of LCC resonator loops
• All magnetically coupled.
• Solves coil challenges and 

achieves very high Q
 Thin foils minimize skin & 

proximity effects
 No additional losses in 

capacitor plates.
 No vias or high-current or 

voltage terminations.

*9 patents pending or granted

Single Section



Example implementation
 Q = 1699

 Figure of merit

𝑄𝑑 =
𝑄

𝑑
= 257 cm-1

 6X highest Qd in the literature.
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6.6 cm 



Example implementation
 Q = 1699

 Figure of merit

𝑄𝑑 =
𝑄

𝑑
= 257 cm-1

 6X highest Qd in the literature.
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6.6 cm 



Example implementation
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19 mm 

 Q = 1699 

 6X highest Qd in the literature: 

𝑄𝑑 =
𝑄

𝑑
= 257 cm-1

 1 kW at 19 mm, 
95% dc-dc efficiency



Practical implementations

Scales for different applications developed by Resonant Link, Inc.
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Medical Implants
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 Low temperature rise and low tissue heating enables 

applications that couldn’t be done before.

Resonant 

Link Medical



Higher power application

 19.2 kW, 400 A output

 Air gap up to 10”

 Misalignment +/- 6”
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Self resonant components as 
power-conversion passives 
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High-density resonant structure, ~1.2 cm3

• 0.5 mΩ ESR in a 250 V dc rated component.

• Without considering any limitations of today’s power switches, 
over 10 kW would be possible at over 99% efficiency.

High-Q MLCC-winding components

• Developed for wireless power transfer, Q = 675~1699

• More flexibility to match circuit applications.



Merged with circuit and fully integrated on die

 Fully integrated ReSC DC-DC converter

 Merged multiphase LC resonator on-chip

 Capacitive ballasting → uniform current → decreases ESR
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Merged and fully integrated—results 
Efficiency with Light-Load Off-Time Modulation
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Comparison to Highly/Fully Integrated Converters

 49.1% efficiency enhancement over LDO 

 2.4–4.4 V in, 1–2.2 V out, 870 mW, 48 MHz

 85.5% peak efficiency

 97 mW/mm2 (chip area); 267 mW/mm2 (resonator area)

34Prescott McLaughlin, Ziyu Xia, Jason Stauth, ISSCC 2020



Electrical Parameter Integration

 Design for the Lm and Lℓ you want, separately, rather than 

looking at k.

 Integrating functions can be nice, but look for bigger 

benefits to make it worthwhile:

 Coupled inductors that circumvent the transient response/ripple 

tradeoff while reducing size, loss and energy storage.

 LC structures that use C not only to resonate, but also to ballast 

current, sharing it between parallel paths, without the twisting 

used in litz wire.
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Shape optimization
Add-constraints: 
 Drop-in wire for winding

 Two-piece core
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Free shape concept

Calculated design

Optimized design



Free shape optimization?
 Optimize air-core inductor on PCB

 OK, we do need constraints:

 Any 2D shape on each layer + vias.

 But must be valid—ended up 
needing 14 rules.

 Also need a fast field solver:  FFT 
Accelerated PEEC method: open 
source code available.

 Details: presentation by 
Dr. Thomas Guillod, 
11:30 on Th, T36.5  room A312
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Valid Geom. Invalid Geom.



Will it invent something new?
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?



Optimization Process

39



Without Near-Field Opt. With Near-Field Opt.

Total Efficiency 𝟖𝟎. 𝟖% 𝟕𝟖. 𝟗%

Inductor Efficiency 𝟖𝟗. 𝟕% 𝟖𝟖. 𝟏%

DC Near-Field 𝟏𝟐𝟒𝟕 A/m 𝟒𝟒𝟏 A/m

AC Near-Field 𝟔𝟔𝟎 A/m 300 A/m

Add constraints: terminal location and external field limit
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 Shape optimization is very powerful for addressing constraints

- 2%

0.45x



Conclusions

 Electrical Parameter Integration

 Design for Lm and Lℓ

 Look for benefits beyond parts count

 Shape optimization

 New capabilities emerging.

 Presentation by Dr. Thomas Guillod, 
11:30 on Th, T36.5  room A312
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