

Ferrite Test and Measurement

DESIGN

DEVELOP

Fair-Rite Products Corp.

Intro to Fair-Rite Ferrite Basics Test and Validation Determining Test Requirements Mechanical Testing Electrical Testing Special Requirements

Introduction FAIR-RITE PRODUCTS CORP.

Founded in 1952, family-owned and operated.

IS09001:2015 and IATF16949:2016 certified

Providing ferrite components for the electronics industry for nearly 70 years.

- Component manufacturing in New York and Asia.
- Powder production and warehousing in Illinois.

Used for various application s:

- EMI Suppression
- RFID / Antenna
- Inductive
- Power

Ferrite Basics

What Is Ferrite?

Ferrite is a soft magnetic material formed by pressing and firing metal oxides into a ceramic material.

Two basic Materials: MnZn and NiZn

A 'Soft' magnetic material is one that can be both easily magnetized and demagnetized.

Application Areas of One Material

DELIVER

DESIGN

DEVELOP

Fair-Rite Products Corp.

Testing Overview

Test & Validation

Ferrite production requires extensive quality control checks throughout the manufacturing process

This starts during the production of the raw materials and ends with a final quality check immediately preceding packaging of the cores

How Ferrite Is Made

DEVELOP

DESIGN

Shapes & Materials

Basic testing of ferrite cores comes down to mechanical (dimensional) measurement and electrical performance characterization

Electrical and mechanical characteristics are a function of both material input at the beginning of the process AND the various production steps following

Process variation at any point in the process can have significant knock-on effects later and could result in unacceptable production parts

Electrical Test Equipment

- LCR meters
- Impedance analyzers
- Network analyzers
- Ohm-meters
- AC Wattmeters
- Oscilloscopes

Mechanical Test Equipment

- Calipers, micrometers, depth/height gauges
- Pin/plug, go, no-go gauges
- Coordinate measuring machine
- Optical measuring machines
- Surface profilometers

Material Properties

- Much of the basic characterization done to ferrite cores is derived from the materials (nominal) characteristics
- These are back calculated to set specifications in measurable parameters for the individual part (ie. Measuring inductance to validate permeability)

Property	Unit	Symbol	61	52	51	44	46	43	15	31	77	78	20	73	75	76
Material Type			NiZn	NiZn	NiZn	NiZn	MgZn	NiZn	NiZn	MnZn	MnZn	MnZn	NiZn	MnZn	MnZn	MnZn
Initial Permeability @ B <10 gauss		μ	125	250	350	500	500	800	1500	1500	2000	2300	2300	2500	5000	10000
Flux Density	gauss mT	В	2500 250	4200 420	3500 350	3000 300	2550 250	3500 350	2700 270	3600 360	5100 510	4800 480	2700 270	4200 420	4800 480	4000 400
@ Field Strength	oersted A/m	н	15 1200	10 800	10 800	10 800	10 800	10 800	5 800	5 400	5 400	5 400	10 800	5 400	5 400	5 400
Residual Flux Density	gauss mT	Br	1000 100	2900 290	2300 230	1100 110	1680 168	2200 220	1800 180	2600 260	1800 180	1500 150	1800 180	1100 110	1000 100	1800 180
Coercive Force	oersted A/m	Hc	1.2 96	0.6 48	0.6 48	0.45 36	0.53 32	0.36 36	0.2 16	0.34 27	0.25 20	0.2 16	0.18 14	0.18 16	0.11 9	0.12 10
Loss Factor @ Frequency	10 ⁻⁶ MHz	tan δ/μ	90 10	45 1	30 1	150 1	60 0.1	100 1	15 0.1	20 0.1	15 0.1	3 0.1	10 0.1	10 0.1	15 0.1	15 0.025
Temperature Coefficient of Initial Permeability (20 – 70°C)	%/°C	T.C.	0.1	0.8	1.3	1.6	0.85	1.25	1.1	1.3	1.2	1	0.8	0.5	1	0.5
Curie Temperature	°C	Тс	>300	>250	>170	>160	>140	>130	>105	>130	>200	>200	>95	>160	>140	>120
Resistivity	ohm-cm	р	10 ⁸	10 ⁹	10 ⁹	10 ⁹	10 ⁸	10 ⁵	10 ⁸	3000	100	200	10 ⁷	100	300	50
Application Area EMI sup		pression														
Recommended Frequency Range	MHz		200- 2000	50-1000	50-500	25-300	25-300	25-300	10-300	1-300	<10	<10	5-200	<50	<20	<5

DESIGN

DEVELOP

DELIVER

Application Specific

- Some of the characteristics measured are a result of the use case of the core
- An example of this would be measuring impedance on a suppression core or core losses on a power rated part at levels or frequencies outside of the material property derived norms

Custom Tests

DESIGN

- In some cases (primarily in custom cores), tests are designed to accurately replicate very specific conditions the core will be subjected to
- Simple ones might include mechanical strength or over temperature performance
- More complex tests may involve multiple variable inputs

DEVELOP

DELIVER

Electrical Testing

Inductance and Quality Factor

DELIVER

- Inductance factor (AI) is a standard test carried out on inductive rated parts
- Cores are measured at 10kHz sinusoidal with a flux density of less than 1mT (same as initial permeability)
- Lead length is deliberately kept to minimum and turn count high enough to mitigate the inductance added by the wire
- Series inductance and quality factor will also be measured at some higher frequency to ascertain loss factor
- The frequency at which this is characterized will depend on the material and/or application
- Flux density is at or below 100μT

DESIGN

Impedance

DESIGN

- For cores that are used as suppression devices, the vector quantity of the impedance is characterized on an impedance analyzer
- The frequency of the measurement will be determined by the effective suppression frequencies of the material and/or the application
- Wire length being kept to a minimum is of critical importance here as the testing is generally carried out very low turn count (usually 1)

DEVELOP

DELIVER

Core Loss

DESIGN

- In addition to Al and loss factor, parts that will be operating at high flux densities may be tested for core loss
- This testing is performed with a sinusoidal excitation and a wattmeter (at low frequencies)
- The frequency and flux density are variable depending on the material and application

DELIVER

Thank You!