Coupled Electronic and Magnetic Systems for High Performance Power Electronics

What are Our Approaches to Miniaturize Magnetics?

Today's active areas of research (component-level)

- High frequency switching (MHz+)
- New magnetic materials
- Leverage planar magnetics
- Novel winding techniques

- Key to passives reduction:
 - Decrease their numerical values
 - Decrease their energy storage requirements
- Increasing f yields smaller L, C for same impedance

High Performance Materials at High Frequencies

Power handling capability per unit volume

Employing Planar Magnetics

Windings of inductors/transformers implemented as copper traces on printed circuit boards (PCBs)

Planar Magnetics: Cost-Effective, Easy to Build, with Good Thermals

- Low profile (minimize box volume)
- Good thermal characteristics (high surface area to volume)
- Ease of manufacturability
- Highly repeatable
- Lower cost than wire-wound alternatives

Conventional Magnetic Core

Aluminum Plate

Temperature[C]

Planar Magnetics Difficult w/ High Step-Down, High Current

Large penalty for many turns on a layer

Minimizing Turns Count is Greatly Advantageous

A Fractional Turn as Defined this Way Is Not Practical

Taking a Step Back

We can reduce this design into these three key elements

Creating Magnetic Components

Inductors and transformers

- Today's active areas of research
 - High frequency switching (MHz+)
 - New magnetic materials
 - New winding techniques
 - Planar magnetics
- "Physical domain"

Leveraging Magnetic Components

Can We Explore Something More Fundamental?

Can we create something different by treating these elements more fundamentally?

A Fractional-Turn Transformer Using a New Kind of Structure

Assume Physical Symmetry About Center of the Core

Assume symmetry

Excite the Primary Winding, Flux Flows Symmetrically

Assume symmetry

Orthographic View

Side View

Top View

<i>φ</i> /2·、	φ/2
\mathbf{x}^{l_1}	<i>l</i> ₂
i _p	i _p ,

Symmetry and Magnetic Core Enforce Equal Currents

Assume symmetry

Side View Top View Orthographic View

 $\oint H.\,dl = 8i_p - i_1 = 8i_p - i_2 \qquad \Longrightarrow \qquad i_1 = i_2 \text{ by <u>symmetry</u>}$

Symmetrically Distribute Two Full Bridge Rectifiers Around the Core

F

The Structure Behaves Like a Fractional Turn Transformer

- Free to treat conductors as independent elements
- Connections yield:

$$2V_o = \frac{V_p}{N_p}$$

$$\frac{V_o}{V_p} = \frac{1/2}{N_p}$$

A fractional turn transformer

The CEMS Concept: A tighter integration of these elements

View and design these as one coupled system We call this a "Coupled Electronic and Magnetic System" (CEMS)

VIRT: An Example of a Coupled Electronic and Magnetic System

M. K. Ranjram, I. Moon and D. J. Perreault, "Variable-Inverter-Rectifier-Transformer: A Hybrid Electronic and Magnetic Structure Enabling Adjustable High Step-Down Conversion Ratios," in *IEEE Transactions on Power Electronics*, vol. 33, no. 8, pp. 6509-6525, Aug. 2018, doi: 10.1109/TPEL.2018.2795959.

How Turns Implementation Affects Losses

Copper loss
$$\propto i^2 R \longrightarrow \propto N^2$$

Core loss $\propto \left(\frac{V}{N}\right)^{\beta} \longrightarrow \propto \left(\frac{1}{N}\right)^3$

Turns Implementation	Relative Cu loss	Relative Core Loss
32:2	4	1/8
16:1	1	1

How Turns Implementation Affects Losses

Copper loss
$$\propto i^2 R \longrightarrow \propto N^2$$

Core loss $\propto \left(\frac{V}{N}\right)^{\beta} \longrightarrow \propto \left(\frac{1}{N}\right)^3$

Turns Implementation	Relative Cu loss	Relative Core Loss
32:2	4	1/8
16:1	1	1
8:0.5	1/4	8

Follows the right trend

Correct Trade-off: Exponential Rebalancing

- Twice as many switches, but each carries half the current for the same output power and voltage
- For same transistor area, identical transistor loss
- An advantage at high output currents, easier terminations without direct parallelization.

What about the Transistors?

F

Ţ

Variability Comparison

Two Key VIRT Features

Variable Inverter/Rectifier Transformer

Variability for:

Accommodating wide voltage variations

Two Key VIRT Features

Variable Inverter/Rectifier Transformer

- Variability for:
 - Accommodating wide voltage variations

Fractional turns for:

- High current carrying capability
- Reducing the number of primary turns in high step-down transformers (adv. for planar magnetics)

What About Winding Techniques?

- Today's active areas of research
 - High frequency switching (MHz+)
 - New magnetic materials
 - Planar magnetics
 - Novel winding techniques

The magnetic component's ability to carry current is strongly dependent on how it's wound, especially at high frequencies.

Copper Loss Reduction by Parallelizing Windings With Interleaving

F

Non-interleaved

Resistance vs. Capacitance Trade-off of Interleaving

With Realistic Terminations, Loss is 2.5x Higher Than Expected

High Current Planar Magnetics

If we want to carry high current in a planar magnetic, complex vertical stackups are problematic

A better choice: transformer parallelization

Combine cores for volume reduction

Wound such that equal and

opposite flux flows on outer legs

High Current Planar Magnetics

If we want to carry high current in a planar magnetic, complex vertical stackups are problematic

A better choice:

- Parallel "horizontally" rather than "vertically"
- "Matrix transformer" concept applies here

"Gear Shifting" Transformer Core and Copper Loss

5

R

M. K. Ranjram and D. J. Perreault, "Leveraging Multi-Phase and Fractional-Turn Integrated Planar Transformers for Miniaturization in Data Center Applications," 2020 IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL), Aalborg, Denmark, 2020, pp. 1-8, doi: 10.1109/COMPEL49091.2020.9265752.

Transformer loss "Gear Shifting" Is Beneficial

Ţ

K. Venkatachalam, C. R. Sullivan, T. Abdallah, and H. Tacca, "Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only Steinmetz parameters," in *Proc. IEEE Workshop Comput. Power Electron*, 2002, pp. 36–41. P. L. Dowell, "Effects of eddy currents in transformer windings," in *Proc. Inst. Elect. Engineers*, vol. 113, no. 8, pp. 1387–1394, 1966

Propose iterative design procedure, including designing with good termination practices

SPHTV, SPP stack up, 3/2/3 oz copper, 12.5 cc
 SPPS achievable, but implementation is more complex

SPHTV, SPP stack up, 3/2/3 oz copper, 12.5 cc
 380 to 12V ⇒ 8:0.5 ⇒ 4 + 4 primary turns

- SPHTV, SPP stack up, 3/2/3 oz copper, 12.5 cc
- **380** to $12V \Rightarrow 8:0.5 \Rightarrow 4 + 4$ primary turns
- Inverter: Choose best R_{on} * C_{oss} figure-of-merit, being mindful of:
 - GaN dynamic on-resistance
 - GaN C_{oss} losses
 - GS66516T 650V

- SPHTV, SPP stack up, 3/2/3 oz copper, 12.5 cc
- **380** to $12V \Rightarrow 8:0.5 \Rightarrow 4 + 4$ primary turns
- Inverter: Choose best R_{on} * C_{oss} figure-of-merit, being mindful of:
 - GaN dynamic on-resistance
 - GaN C_{oss} losses
 - **GS66516T 650V**
- **Rectifier:** Choose best $R_{on} * Q_g$ FOM
 - *C_{oss}* less important due to high sec. currents
 Silicon, 25V IQE006NE2LM5

- SPHTV, SPP stack up, 3/2/3 oz copper, 12.5 cc
- **380** to $12V \Rightarrow 8:0.5 \Rightarrow 4 + 4$ primary turns
- Inverter: GS66516T
- Rectifier: IQE006NE2LM5

SPHTV, SPP stack up, 3/2/3 oz copper, 12.5 cc

- **380** to $12V \Rightarrow 8:0.5 \Rightarrow 4 + 4$ primary turns
- Inverter: GS66516T

Rectifier: IQE006NE2LM5

- SPHTV, SPP stack up, 3/2/3 oz copper, 12.5 cc
- **380** to $12V \Rightarrow 8:0.5 \Rightarrow 4 + 4$ primary turns
- Inverter: GS66516T
- Rectifier: IQE006NE2LM5

$$L_{\rm lk} \approx \frac{2\mu_o N_p^2}{(w)(\rm MPL)} \left(s_{\rm SP} + \frac{s_{\rm PP}}{4}\right)$$

SPHTV, SPP stack up, 3/2/3 oz copper, 12.5 cc

- **380** to $12V \Rightarrow 8:0.5 \Rightarrow 4 + 4$ primary turns
- Inverter: GS66516T

Rectifier: IQE006NE2LM5

Fig. 7: ANSYS Icepak thermal simulation of the transformer.

SPHTV, SPP stack up, 3/2/3 oz copper, 12.5 cc

- **380** to $12V \Rightarrow 8:0.5 \Rightarrow 4 + 4$ primary turns
- Inverter: GS66516T

Rectifier: IQE006NE2LM5

Planar Transformer			
Stack-up	Four layers; $L1/L2/L3/L4 =$		
	3/2/2/3 oz.		
Winding arrangement	S/_/P/P (second layer unused)		
N_p	Four turns; two turns each on		
	L3 and L4, connected in series		
Secondary winding	Four half-turns on L1		
Layer spacing (approx.	L1-L2: 0.22mm; L2-L3: 1mm;		
from manufacturer)	L3-L4: 0.22mm		
Board height (h_{PCB})	1.68 mm		
Core material	Hitachi Metals ML91S		
Core-to-trace spacing	0.508mm		
Trace-to-trace spacing	0.254mm		
Core dimensions	<i>a</i> =16.13mm; <i>b</i> =5.16mm;		
	w =7.53mm; h_w =4mm		
Core height	9.23 mm		
Transformer box	14.2 cm^3		
volume			

Inverter	
Inverter switches	GS66516T
Gate drivers	SI8271
Isolated power	ADUM5010
Rectifier	
Rectifier switches	IQE006NE2LM5 and
	IQE006NE2LM5CG
Gate drivers	LM5113QDPRRQ1
Output capacitors	$C_o \approx 144 \mu \mathrm{F}; 40 \mathrm{x}$
	C2012X7S1E106K125AC; 5
	pcs. per half-bridge. $10\mu F$
	nominal, de-rated to $\approx 3.6 \mu F$
	ea. at 12Vdc, 100°C [33]
LLC	
Resonant capacitor	47.22nF; 1x
	47nF/630V/1812/C0G +
	0.22nF/2kV/C0G
Resonant inductor	520 nH; derived from
	transformer leakage
Magnetizing inductor	15.3 μ H; g_1 = 0.127mm,
	g ₂ =0.318mm
Other	
Controller	TMS320F28379D
Cooling	Nidec FAN-0100L4, 40mm
	Axial Fan, 40x40x28mm,
	8500RPM

SPHTV Prototype

4 layer, non-interleaved SPP, 3/2/3oz

Losses and Thermal Performance Well Predicted

Fig. 12: Estimated loss breakdown at full load, not including hotel power (2.7W) and fan power (1.44W).

Thermal performance

Fig. 7: ANSYS Icepak thermal simulation of the transformer.

Fig. 11: Thermal image of secondary-side under full-load (obtained after 15 minutes of continuous operation, 22°C room temperature). The fan is located to the right of the PCB.

Example Operating Waveforms

Inverter ZVS achieved

All half-bridges are operated identically, experience slightly different deadtime transitions owing to local decoupling loops

Near-resonant current in primary tank

Prototype is Extremely Efficient

SPHTV: Much Lower Loss and Much Smaller than Best Alternatives

F

 $\sim P_{cu}/16$, $\sim 2^{2\beta}P_{core}$

380-12V, 1kW

	This work	MT [6]	QTT [11]
Stack-up	S/_/P/P	S/P/P/S	S/G/P/P/G/S ^a
Peak power	97.7%	-	97.0%
stage efficiency			
Peak efficiency	97.3%	97.1%	-
including hotel			
power			
Full load loss	29.9	34.4	41
(power stage			
only) [W]			
Transformer loss	10.8	16.3	13.2
at full load [W]			
Transformer	1536	2200	2500
footprint [mm ²]			
Height [mm]	9.23	7.3	8.9
Transformer box	14.2	16.1	22.3
volume [cm ³]			

^a 'G' is a secondary layer tied directly to secondary ground

[6] M. Mu and F. C. Lee, "Design and optimization of a 380-12 v high frequency, high-current llc converter with gan devices and planar matrix transformers," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol.

[11] Y. Liu, K. Chen, C. Chen, Y. Syu, G. Lin, K. A. Kim, and H. Chiu, "Quarter-turn transformer design and optimization for high power density 1-mhz llc resonant converter," IEEE Transactions on Industrial Electronics, vol. 67, no. 2, pp. 1580-1591, 2020.

M. K. Ranjram, I. Moon and D. J. Perreault, "Variable-Inverter-Rectifier-Transformer: A Hybrid Electronic and Magnetic Structure Enabling Adjustable High Step-Down Conversion Ratios," in IEEE Transactions 53 on Power Electronics, vol. 33, no. 8, pp. 6509-6525, Aug. 2018, doi: 10.1109/TPEL.2018.2795959.

Summary of the Half-Turn VIRT

- Coupled Electronic and Magnetic System (CEMS) paradigm enables the VIRT concept
- Fractional and variable turns ratios unachievable in conventional design
- Used to build much smaller and much more efficient datacenter supply

- 1. Can reduce the number of secondary gate drivers
- Used for prototype convenience, but same gating signal sent to each switch.

Additional Implementation Details

2. Single dc output terminal used

In practice, distribute dc output. Room also included in prototype for additional heat-sinking, but proved unnecessary.

3. Isolated power supplies to power inverter from the secondary-referred hotel power. Loss (~0.45W) included in efficiency estimate

4. Space conservatively included for inverter heat sink.

Footprint can be dramatically reduced.

5. Acrylic core mount used for convenience to fix gap lengths during prototyping.

In practice, these would be made permanent when mounting to board.

