

Nanocrystalline, Amorphous and Powdered Amorphous Cores

APEC 2019

Mark Rine

Director Sales and Marketing

Hitachi Metals America, Ltd.

Mark Rine Bio

BS Electrical Engineering – Purdue University MBA – University of Southern Indiana

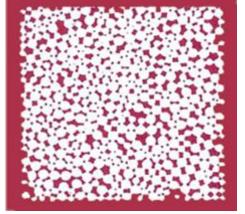
Companies

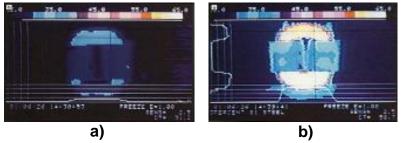
Siemens	17 years
Spectronics, Inc.	7 years
VAC Magnetics USA (Vacuumschmelze GmbH)	9 years
Hitachi Metals USA, Llc	2 years

Current Position – Director Sales & Marketing, Hitachi Metals USA. Responsible for NAFTA Nanocrystalline materials and components sales and marketing.

Past responsibilities include – Design Engineering, Manufacturing Engineering, Operations Management, Product Management, International and Domestic Sales and Marketing

Resides in Dallas, Texas


Languages – English, German


Amorphous Metals - How Are They Unique? Materials Mage

Metglas[®] Is Amorphous

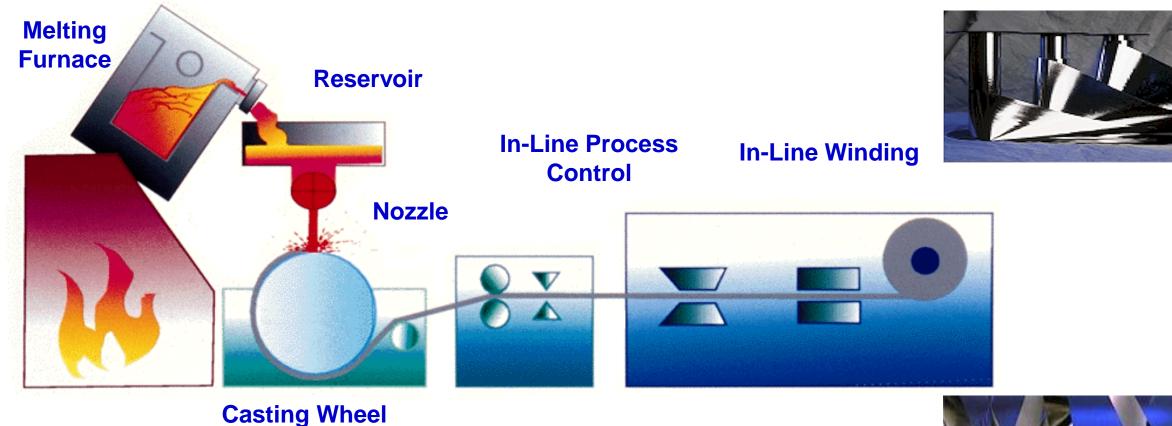
Structure Randomized by Process



- Absence Of Structure Helps Magnetization Process
- Simple Heat Treatment Changes Directional Properties of Material or Core

Metallic Solids Are Crystalline

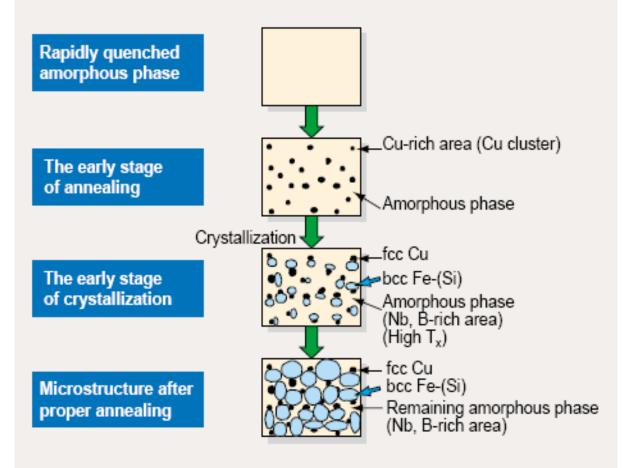
Atomic Arrangement Is Regular & Periodic


- Structural Anomalies in Atomic Arrangement Hinder Magnetization Process
- Structural Arrangement Modified By Thermo-mechanical (Hot Rolling) Grain Orientation

Infrared Photographs of (a) Metglas® Amorphous Metal Transformer / Inductor Core & (b) Grain Oriented Steel Heat Spectrum Radiated in Grain Oriented Core is significant compared to Metglas® Amorphous Metal Transformer / Inductor Core due to its significant core losses

Random Structure Gives Enhanced Performance

Rapid Solidification Material Casting Process


Unique Process Allows For Enhanced Properties

FINEMET[®] Soft Magnetic Material Products

J. 3 Microstructure of FINEMET®

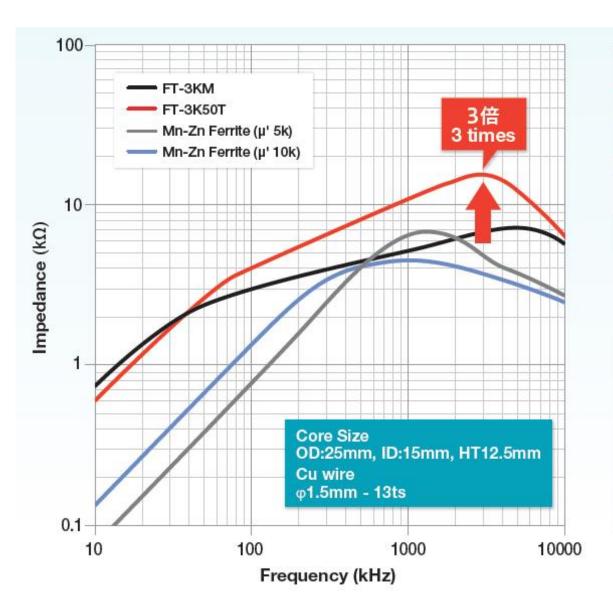
	,		20nm
Material Comparison	Chemical Composition	Crystal	Magnetic property
Crystal		Big	Normal
Amorphous	Fe, Si, B	None	Good
Nano-crystal FINEMET [®]	Fe, Si, B, Cu, Nb	Small (≒10nm)	Excellent

Key Magnetic Core Design Criteria

Size and Weight

Efficiency (Core Loss)

Solution Cost

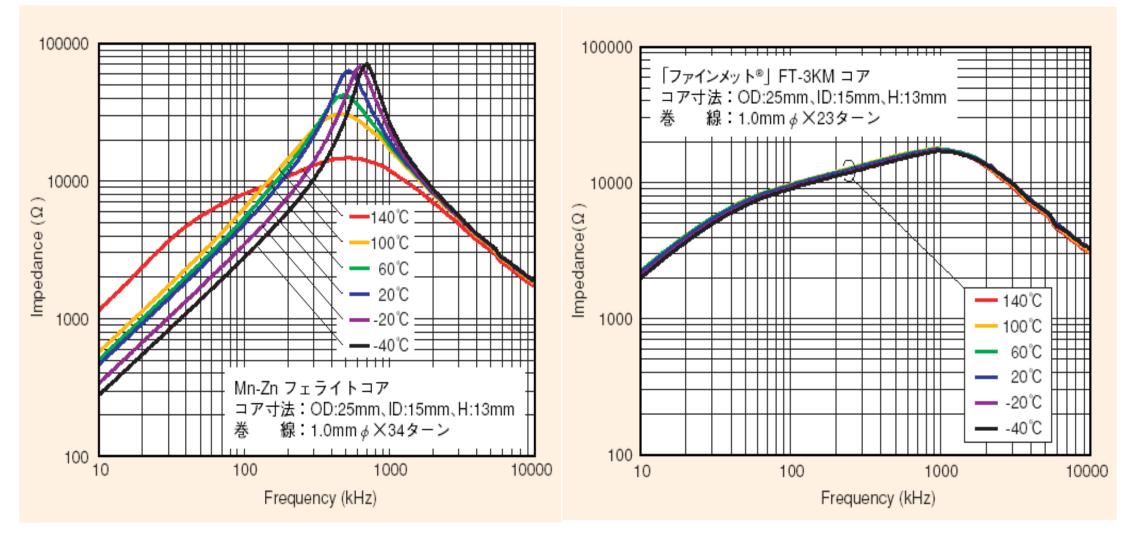

FINEMET versus Ferrite Material Properties

		M
Material	FINEMET (Nanocrystalline)	Ferrite
Material Composition	Fe Si (75 / 25%)	MnZn
Permeability (max at 10Khz)	500 to 100,000	15,000
Saturation Induction Bsat	1.2 Tesla	0.4 Tesla
Core Loss W/Kg (100Khz, 0.2T)	20 (FT-3K50T) and 35 (FT-3KL)	120
Curie Temperature	550- 570 deg C	200-300 deg C
Max Continuous Operating Temperature	150 deg C 7	100 deg C

FT-3K50T Impedance vs Frequency

	FT-3K50T	Mn-Zn
Volume	24cm ³ (55% of Mn-Zn)	44cm ³
Weight	55g (53% of Mn-Zn)	104g

Spec.; Rated Current 20A, 3mH at 100kHz



FINEMET Temperature Stability vs Ferrite -40 deg C to +140 deg C

MnZn Ferrite CMC

FINEMET CMC

FINEMET Advantages

- Filter Order Reduction (excellent low frequency and high frequency performance)
- Core Size Reduction
- Core weight reduction
- Thin ribbon material offers high frequency higher permeability than competitive nanocrystalline tapes offering same L with less cross sectional area (lower cost, small size / weight)
- Energy efficiency (reduced core loss -transformers, lower DCR-CMC)
- Ease of design (constant u over temperature)
- Mechanical shock / vibration (no chip and crack specification)
- Improved conduction emissions performance can sometimes lead to reduced radiated emissions.

FINEMET Applications

Common Mode Chokes

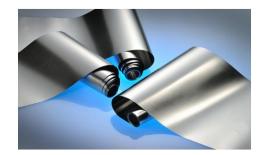
High frequency attenuation across FCC/CISPR range (150 kHz – 30 MHz)
Size / Weight reduction (high permeability material)
Can be cost reduction (Filter order reduction)
High temp capability / Consistent temp performance

- Medium Frequency transformers

 High Bsat (1.2) = reduced core size
 Low core loss compared to ferrite
 Effective in 10 kHz 80 kHz frequency range
- Wireless Charging Receiver / Transmitter Core (Qi standard)
 High Bsat (1.2) = less magnetic material required. Thin package profile.
 Thin tape construction / packaged in laminated sheet form
- Current Transformer

High permeability and low core loss = low amplitude error and low phase angle error so can meet ANSI / IEC 0.2 / 0.5 accuracy standards for energy metering with calibration.

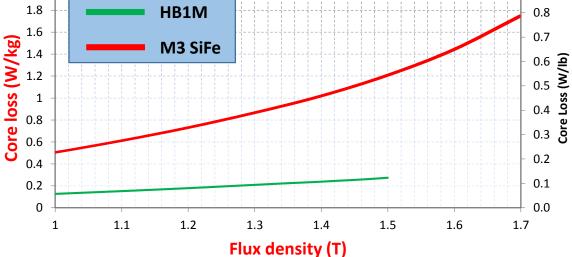
Capable of <1% uncalibrated accuracy for datacenter monitoring.



Option 2

Metglas[®] Amorphous Metal – 2605HB1M Alloy

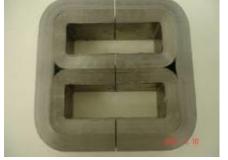
Metglas® Amorphous Metal


Soft Magnetic Materials with:

- Extremely Low Core Loss, 35% of M3-Grade GOES core loss in finished cores
- High Permeability
- High Efficiency
- Smaller Size and Weight

Electromagnetic Properties for 2605HB1M Alloy

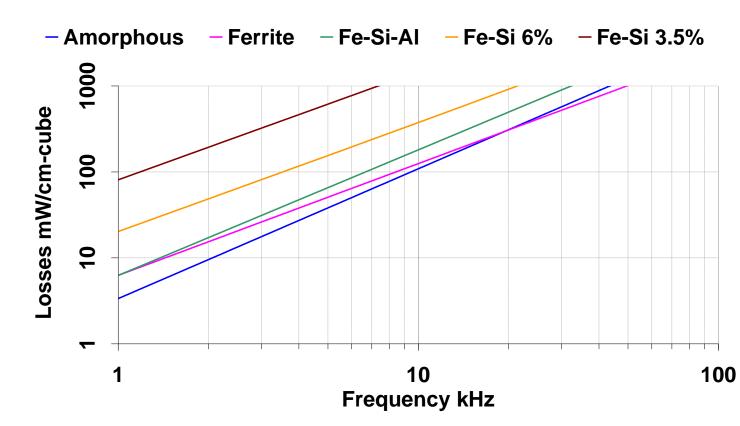
Saturation	Electrical Resistivity	Magnetostriction	Curie Temperature
Induction (T)	(μΩm)	(x10-6)	(°C)
1.63	1.2	27	364



POWERLITE[®] - Amorphous Metal Cut Cores

Physical Properties METGLAS Alloy 2605SA1

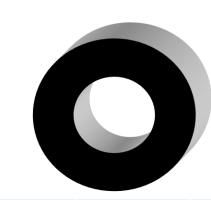
Ribbon Thickness (µm)	.25
Density (g/cm3)	7.18
Thermal Expansion (ppm/°C)	7.6
Crystallization Temperature (°C)	505
Curie Temperature (°C)	392
Continuous Service Temperature (°C)	150
Tensile Strength (MN/m2)	1k-1.7k
Elastic Modulus (GN/m2)	100-110
Vicker's Hardness (50g load)	860



Application - Differential Mode Chokes / Transformer

- Alternative Energy Power Supplies
- UPS system magnetic components
- Electric Vehicle
- Welding and Plasma cutting
- Medical

Saturation Flux Density (Tesla)	1.56
Permeability (depending on gap size)	VARIABLE
Saturation Magnetostriction (ppm)	27
Electrical Resistivity ($\mu \Omega cm$)	137



Microlite Distributed Gap Cores

Unique combination of high saturation flux density & low loss make Microlite the first choice for all energy storage applications while there distributed gap format renders a distinct RFI advantage to conventional air gap cores enabling the designer to achieve both size & system cost reduction

- Higher Bsat for smaller component size B_{sat} 1.56 Tesla • High permeability u ~ 250 Less turns, lower Culloss Extended Bias property Better retention (%L ٠ vs. DC bias) Lower Magnetic Losses 85 W / kg @ 100kHz, ٠ 1000 Gauss Higher thermal conductivity Ensures good heat dissipation Higher Curie temperature 395 C •
- Excellent permeability @ high frequency 95% @ 1000kHz
- High continuous Service Temperature 150 C

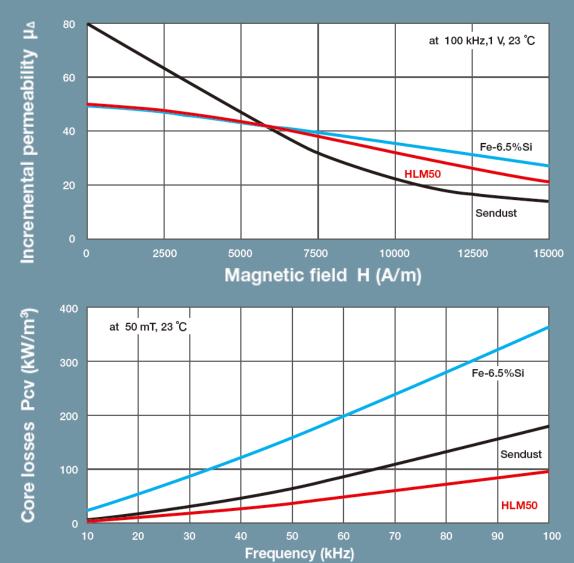
Parameters	Microlite	lron Powder	MPP	Kool Mu	Ferrite
Bsat	1.56	1.0-1.4	0.75	1.1	0.35
					Gap
Permeability	245/380	75	125	125	Based
Core Loss (W/kg)	<80/60	680	65	140	<65
% Perm	50	50	50	50	<25
Turns	1	1.8	1.1	1.1	2.1

Applications

- Output Inductor
- Input Differential Mode Inductor
- Flyback Transformer
- Power Factor Correction Boost Inductor

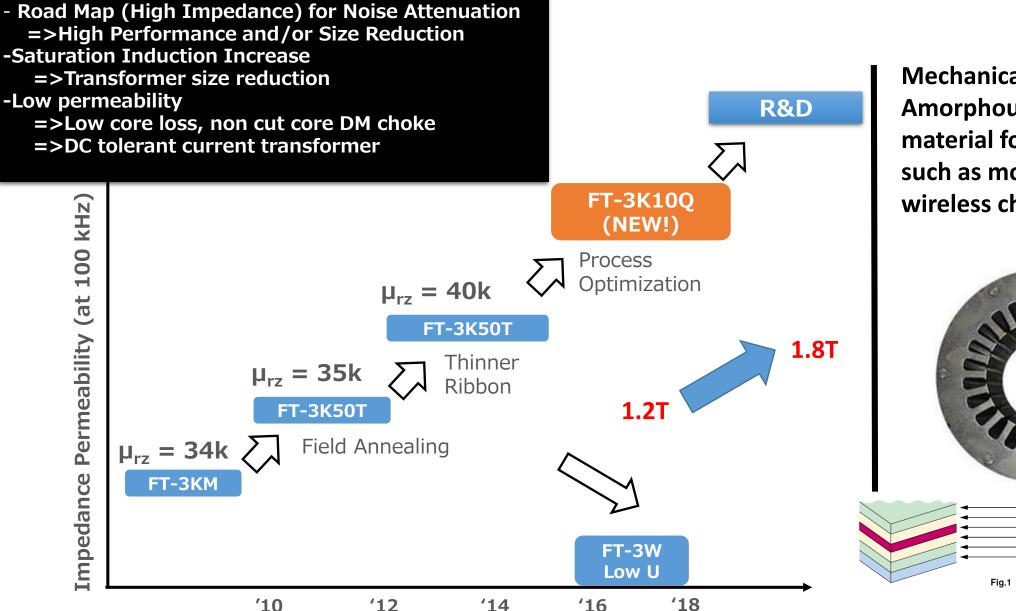
Powdered Amorphous Cores

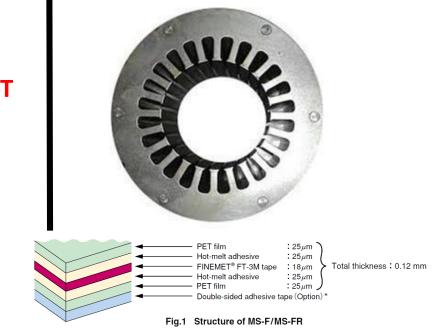
HLM50 series have low loss, high magnetic flux density, and high reliability using our uniquely processed amorphous powder.


This series is suited to coils for higher switching power electronics applications. (Power Factor Correction)

- High Saturation Flux Density Bs Higher saturation flux density compared to Sendust powder core.
- Low Core Loss.

Lower core loss than Sendust powder core.


- Suitable for PFC Circuit and Boost/Buck Converter.
- Three Types of Core are in Production Lineup Bare core, cased core and over-coated core can be applied depending on customer requirement.



Tech Roadmap – Electrical and Mechanical

Mechanical Packaging of Amorphous and FINEMET material for applications such as motor stators and wireless charging

