|
|||||||||||||||
Isolation Standards Say Little About | |||||||||||||||
n our roles as chair and co-chair of the PSMA Safety and Compliance Committee, we have hosted a number of Industry Sessions at the Applied Power Electronics Conferences (APEC). These technical sessions focused on isolation and gate drivers for motor drives, power supplies, and industrial applications. In the course of planning these sessions, one of the things we've learned is that there is confusion concerning which standards apply to the various types of optocouplers, optodrivers and isolators used in gate drive and power supply circuits. How do these electronic devices meet safety rules and what are some of the differences between the requirements imposed by the different safety and regulatory agencies? Besides confusion over which standards apply to isolator devices, there is a general misconception that isolation standards set requirements for isolator performance beyond the input-to-output voltage isolation. For example, isolation standards won't tell the designer anything about transient immunity or propagation delay. This is important because such performance parameters can vary greatly from one isolation device or technology to another. This leads to another point of confusion regarding isolation standards: even though they are called out on isolator data sheets, these are often not the main standards for most applications, but rather secondary standards. In other words, the isolation standards are called for by application or product requirements such as those for medical equipment, for example. In this article, we review the different isolator device types, identify some of the major isolation standards, and then discuss the requirements imposed on the different isolator device types. A Quick Survey of Isolator Types A Quick Survey of Isolation Standards The following standards emerged from the search: UL 1577, IEC 61010-1, VDC V 0884-10 (magnetic and capacitive coupler for safe isolation), VDE V 0884-11 (magnetic and capacitive coupler for basic and reinforced isolation) and IEC-60664. IEC-664 (which refers to other standards ending in 664 and which may be harmonized with IEC-60664) defines Installation Categories as indicated in the diagram (see the figure and Table 2), which come from the Vishay application note. Most appliances and computer equipment fall within Category II while some appliances like cooking ranges are in Category III. A smart meter for utility reading applications belongs in Category IV due to its direct connection to the utility mains. In some applications both an IEC-664 insulation category along with a UL 1577 rating is needed. This all depends on the safety agency defining the test and the end application. Optocoupler Triac Drivers In this case, UL 1577 applies and there are 1-min. test dc voltages and test ac voltages. These are usually 50 Hz and 60 Hz driving solenoids, heaters, lamps, and some motors. These types of devices have between 2000 Vac and over 6000 Vac between the input and output. The regulating standard has been UL 1577 and the VDE DIN EN60747 standard used in Europe. Design engineers need to look at the data sheet for the various standards of the coupler and the end product standard, which may include EN/IEC 60950 and EN/IEC 60065. White good appliances such as clothes washers, dishwashers, refrigerators, and other appliances often employ these SCR and Triac devices, which are controlled by microprocessors and microcontrollers and used to turn-on drive water solenoids or motors. Isolators for Switching Power Supplies Isolated Gate Driver for Motors and Half-Bridge Drivers In addition, many of these components have built-in charge pumps to develop the gate-drive current. That's because the controller is often at a lower voltage than the main power bus, and possibly isolated from the main power bus. With the use of PWM techniques, narrow pulse widths are needed along with very high dv/dt. The high dv/dt can cause the driver to misfire and cause high dissipation in the power switch. This issue was talked about by various presenters in the sessions cited in references 1, 2 and 3. Digital Isolators Summary Since isolation standards are secondary standards referenced by other application or equipment standards, ultimately designers must consult those main standards to determine whether any aspects of those standards will affect their choice of an isolator device. Since the spectrum of application or equipment standards is vast, and access to individual standards requires their purchase, a discussion of what these other standards require of the isolation devices is beyond the scope of this article. References
|
|||||||||||||||
<<-Contents | <-Previous | Page 15 | Next-> | |||||||||||||||
If you or anyone in your company is interested in getting on the distribution list for future issues of PSMA UPDATE, please send e-mail to: power@psma.com. Be sure to include your name and
|