

# Solid Conductive Polymer and Hybrid Conductive Polymer Technologies









### **Technology Comparison**

- Aluminum Electrolytic Capacitors
- Solid Conductive Polymer Capacitors
- Hybrid Conductive Polymer Capacitors

### **Hybrid Conductive Polymer Capacitors**

- Features & Characteristics
- Life Performance

### **Solid Conductive Polymer Capacitors**

- Features & Characteristics
- Replacing MLCCs with Solid Conductive Polymer Caps

### **Typical Applications & Summary**









### Todays Presenter is:



M.Eng.

Stephan Menzel

Senior Key Account Manager

Oversea Sales Division



### **Background:**

- More than 12 years of work experience in passive components & electronics industry
- Expertise in global sales & product marketing, industrial engineering and quality management
- In charge for strategic sales accounts, direct business and product marketing



+49 151 52851347



s.menzel@capxon-europe.com



www.capxongroup.com

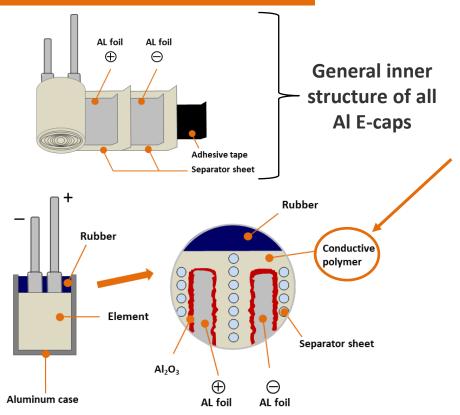


# That's who we are

10 facts about CapXon



Manufacturer of Electrolytic Capacitors








# E-Cap Construction

### What is different with Polymer?





### Solid Conductive Polymer as cathode material

- High conductivity (10<sup>2</sup> ~ 10<sup>3</sup> S/cm)
- Solid material (no freezing or dry-out possible)
- High de-composition temperature ~300°C

### **Benefits**

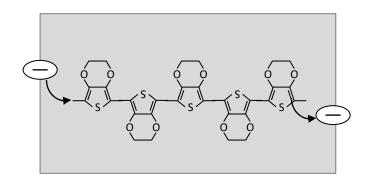
- Low ESR@high frequency 100kHz ~ 300kHz
- Wide operating temperature range -55°C ~ +150°C
- High max. permissible ripple current
- Long life stable performance over product life cycle
- High thermal stability over the whole temp. range

### **Quality Factors**

- Material: mainly foil, seperator, leads, polymer
- Polymer: impregnation or dispersion solution
- Production: Parameters polymerization process
- Capabilities: Techn. potential and quality of machinery






# Influence of Cathode Material

Solid Conductive Polymer vs. Liquid electrolyte

### What is the difference between Solid Conductive Polymer and Liquid Electrolyte?

### **Solid Conductive Polymer**

Electrons can move on molecules *FAST* (low resistance)



Conductivity index: 1 000 to 10 000 !!!

### **Liquid Electrolyte**

Electrons can move in solution SLOW

(high resistance)

Conductivity index: 1



# Best of Both Worlds



Let's mix it!

**Aluminum Electrolytic Capacitors** 

Low Leakage current

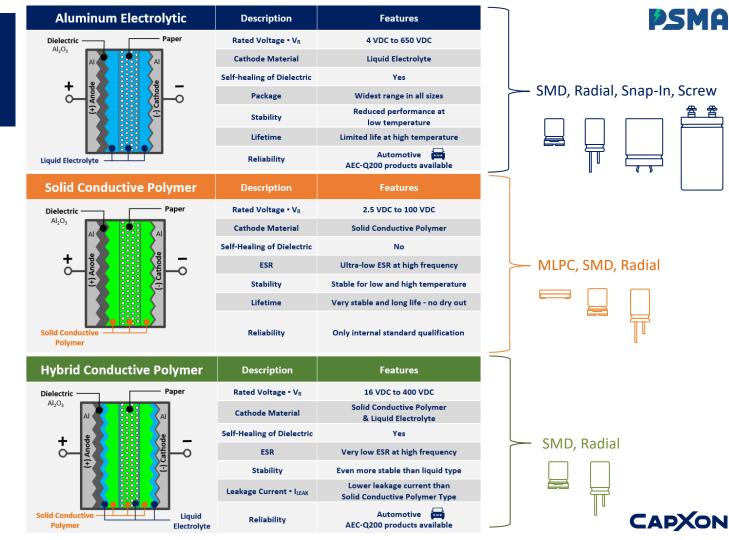
High temperature capabilities

High voltage capabilities

**Solid Conductive Polymer Capacitors** 

High Lifetime Performance

High Ripple Current

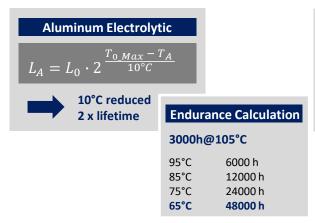

Low ESR

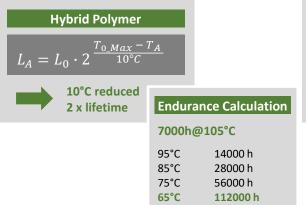
## **Hybrid Conductive Polymer Capacitors**

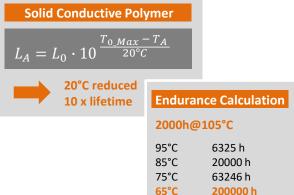
>> combining best features of both techologies <<



# Technology Comparison





# Technology Comparison

### Electrical Performance & Life Estimation

| Case | V <sub>R</sub><br>(V) | C <sub>R</sub><br>(μF) | Size<br>ø DxL<br>(mm) | Technology | Part Number      | ESR<br>(mΩ, 100kHz) | Leakage current<br>(μΑ) after 2 min | Maximum<br>permissible ripple<br>current (mA, RMS) | Temperature Range | Endurance<br>(h) |
|------|-----------------------|------------------------|-----------------------|------------|------------------|---------------------|-------------------------------------|----------------------------------------------------|-------------------|------------------|
|      | 16                    | 270                    | 8 x 11.5              | Liquid     | GF271M016F115ETD | 120                 | 43                                  | 600                                                | -55°C to +105°C   | 3000             |
|      |                       |                        | 8 x 9                 | Hybrid     | AS271M016F090PTD | 26                  | 43.2                                | 2000                                               | -55°C to +105°C   | 7000             |
|      |                       |                        | 8 x 11.5              | Polymer    | PL271M016F115PTD | 9                   | 864                                 | 5600                                               | -55°C to +105°C   | 2000             |







Lo... Endurance value per datasheet

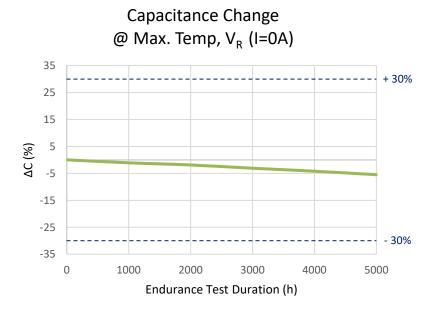
La... Expectedlife within application

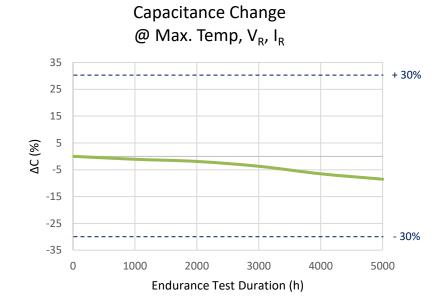
To... Max. temp. according datasheet

T<sub>A</sub>... Application temperature



# Life Performance - Hybrid Caps




Endurance Test Examples – Capacitance Change

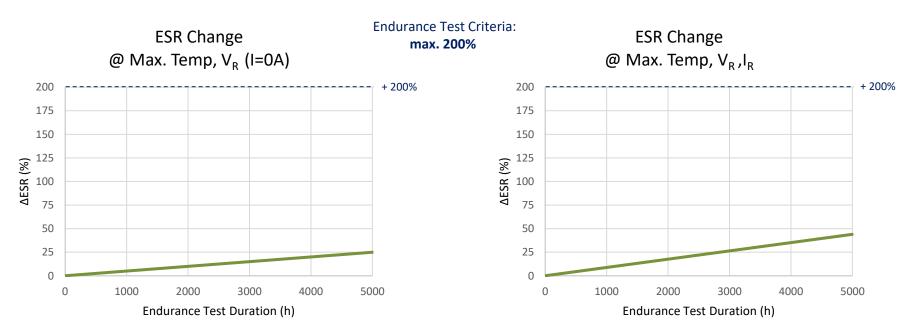
Endurance Test Criteria: ± 30%

### **Hybrid Conductive Polymer Capacitors**














Endurance Test Examples – ESR Change

### **Hybrid Conductive Polymer Capacitors**





# Polymer Caps vs. Others

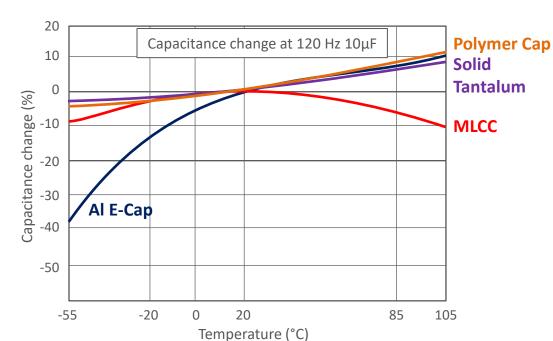








### Capacitance change vs. temperature


### **Comparison:** capacitance – temperature characteristics

The **Solid Conductive Polymer** offers:

- Low temperature stable capacitance
- Stable capacitance in a wide temperature range



Much better "C" on low temperature





# Conductive Polymer

### Impedance vs. frequency

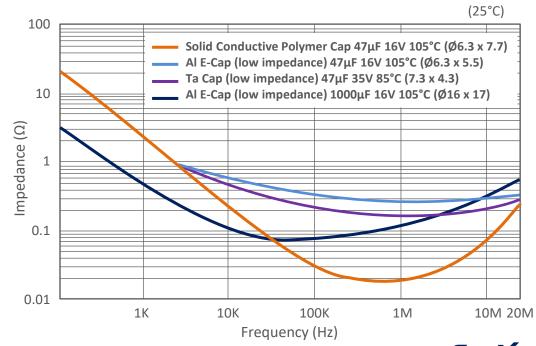













### **Comparison:** impedance – frequency characteristics

The Solid Polymer Al cap offers

- High frequency and low impedance
- It's like the ideal capacitor impedance frequency curve
- Allows to carry large ripple current
- Quick discharge
- It is particularly suitable as coupling capacitor to smooth the ripple in the circuit, pulse, electrostatic and other various kinds of noise







# Conductive Polymer

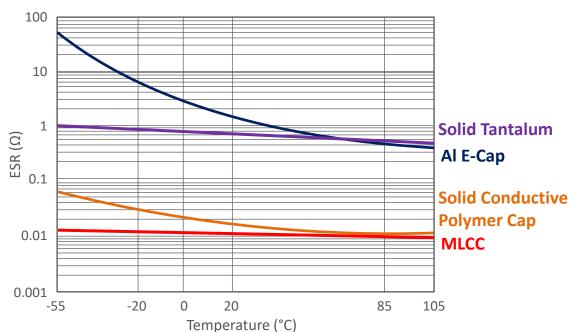








### ESR vs. temperature


**Comparison:** ESR – temperature characteristics

The Solid Polymer Al offers

ESR hardly changes with temperature



Stable ESR over temperature





# Conductive Polymer

### Impedance / ESR vs. frequency

### Impedance and ESR for radial PF series

### PF151M035G125PTA

150μF 35V 105°C (Ø10 x 12.5) 18mΩ

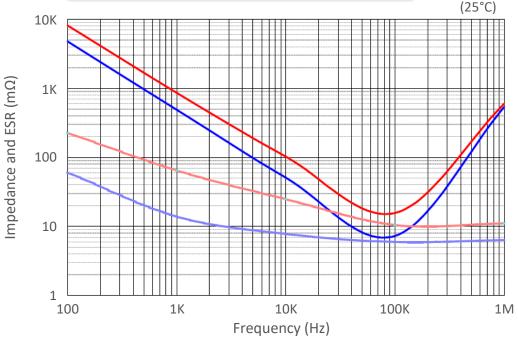
**Impedance** 

**ESR** 

### PF471M016F115PTD

470μF 16V 105°C (Ø8 x 11.5) 10mΩ

**Impedance** 


**ESR** 



- Ultra-low ESR at high frequency range
- Endurance: 105°C 5 000 hours
- Very large permissible ripple current
- No dry-out effect guarantees extremely long life

### **SPECIFICATIONS**







# MLCC vs. Polymer Caps





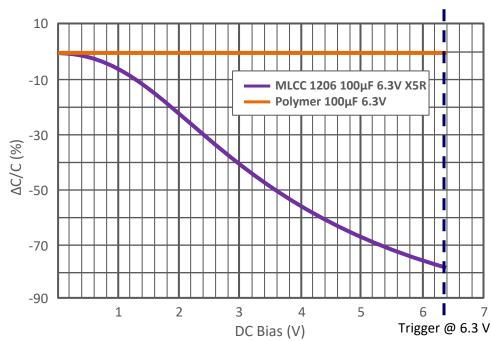








### DC bias Polymer vs. MLCC


### **Comparison capacitance – voltage characteristics**

The **Solid Conductive Polymer** offers:

- Stable capacitance over the whole voltage range
- Smaller dimensions and less pcb area



much better "available" capacitance on higher voltage level

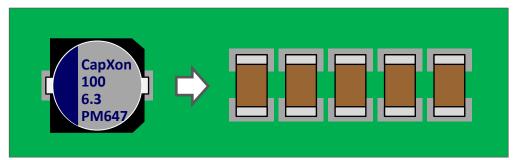




# Saving Costs by Design








### Substitution of MLCCs by Solid Conductive Polymer Caps

| Category    | Series        | Capacitance | Voltage | Max.<br>Temperature | Impedance<br>at 100kHz | Comment     | Туре             | Price per pcs |
|-------------|---------------|-------------|---------|---------------------|------------------------|-------------|------------------|---------------|
| MLCC        | Low impedance | 100 μF      | 6.3V    | 85 °C               | 50 mΩ                  | X5R ceramic | CL31A107MQHNNNE  | USD 0.121     |
| Polymer Cap | Low impedance | 100 μF      | 6.3V    | 105 °C              | 30 mΩ                  |             | PM101M6R3C055PTR | USD 0.104     |

|                           | Worst Case<br>Scenario      | Solid Conductive<br>Polymer<br>100 μF 6.3V ±20% | MLCC<br>100 µF 6.3V ±20% X5R |
|---------------------------|-----------------------------|-------------------------------------------------|------------------------------|
| Nominal value             |                             | 100 μF                                          | 100 μF                       |
| Nominal tolerance         | Polymer: -20%<br>MLCC: -20% | 80 μF                                           | 80 μF                        |
| ΔC/C (DC Bias)<br>at 6.3V | Polymer: 0<br>MLCC: -75%    | 80 μF                                           | 20 μF                        |
| ΔC/C (Temp.)<br>at 85°C   | Polymer: +5%<br>MLCC: -15%  | 84 μF                                           | 17 μF                        |
| Result                    |                             | 84 μF                                           | 17 μF * 5 = 85 μF            |
| Price (USD /pcs)          |                             | 0.1039                                          | 0.1203                       |
| Total amount              |                             | 0.104 · 1 = 0.104                               | 0.121 · 5 = 0.605            |

### One Solid Conductive Polymer Cap replaces five MLCCs



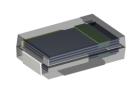
- >> possible cost reduction of 83%
- >> cost savings of about 50k USD per 100k boards





# Typical Applications

Which job they can do best?


# **Hybrid Conductive Polymer Capacitors**





- Automotive Electronics
- DC Link in brushless DC motor drives
- Smoothing for gate drive circuits
- ECU input filtering
- DC/DC power supply input filtering
- Output smoothing in LED power supplies
- Power and battery decoupling
- Server, base stations and industrial PCs

# Solid Conductive Polymer Capacitors



### **Applications:**

- High frequency applications
- Voltage stabilizing in LCD and LED panels
- Input and Output filtering of DC/DC power supplies
- Medical Equipment or any application with high expected life

### **Applications:**

- Digital and high frequency devices
- Voltage stabilizing in LCD and LED panels
- Buffering of CPUs, FPGAs, graphical cards and sensor ICs
- Input and output smoothing in USB power supplies and power banks



# Summary

++... best performance

... well performance

... basic performance



| Characteristics                          | Aluminum<br>Electrolytic Capacitor     | Solid Conductive<br>Polymer Capacitor | Hybrid Conductive<br>Polymer Capacitor |  |
|------------------------------------------|----------------------------------------|---------------------------------------|----------------------------------------|--|
| ESR at<br>High Frequency                 | (120 ~ 1000 mΩ)                        | (7 ~ 15 mΩ)                           | (20 ~ 30 mΩ)                           |  |
| Leakage Current • I <sub>LEAK</sub>      | (0.01*C <sub>R</sub> *V <sub>R</sub> ) | (0.2*C <sub>R</sub> *VR)              | (0.01*C <sub>R</sub> *V <sub>R</sub> ) |  |
| Ripple Current • I <sub>R</sub>          | (~ 600 mA)                             | (2 000 ~ 7 000 mA)                    | (2000 ~ 3000 mA)                       |  |
| Rated Voltage • V <sub>R</sub>           | (~ 700 V)                              | (~ 100 V)                             | (~ 400 V)                              |  |
| Operating Temperature<br>Characteristics | (-40 ~ + 125 °C)                       | (-55 ~ + 125 °C)                      | (-55 ~ + 150 °C)                       |  |
| Low Temperature<br>Characteristics       | (-40 ~ + 125 °C)                       | (-55 ~ + 125 °C)                      | (-55 ~ + 150 °C)                       |  |
| Lifetime                                 | (105 °C / 3000h)                       | (105 °C / 5000h)                      | (105 °C / 10 000h)                     |  |
| Failure Mode                             | Open                                   | Short                                 | Open                                   |  |





# Professional is ...





Headquarters

CapXon

**Technology Ltd. Taiwan Branch** 

5F, 157, Sec 2, Datong Road Xizhi District New Taipei City 22183 ■ Taiwan

T + 886 2 869 26 611

F + 886 2 869 26 447

www.capxongroup.com

### Production

CapXon

Electronic (Shenzhen) Co., Ltd.

No. 4132, Songbai Road Guanming New District Shenzhen City • China

T + 86 755 271 77 888

F + 86 755 271 77 802

