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Why capacitor embedding?

System miniaturization
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Challenges to Embedded Capacitors

Technology option Challenges This
presentation

e Availability in thin form factors; | Part
MLCC * Cutermination

e Integration process

e Reliability
Embedded film capacitors  Not enough density Il Part
Trench capacitors * EXxpensive processes [l Part
Etch foil or Ta electrode e Thick electrode carriers IV Part
capacitors e High ESR

* Process integration
e Reliability



Inserted MLCCs



Inserted Ceramic Capacitors

Embedding technologies (AVX)

Taiyo-Yuden Murata
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e Many companies offering low-profile discrete options
e AVXdown to 0.15 mm
* Taiyo-Yuden down to 0.11 mm
* Samsung down to 0.1 mm
* Murata down to 0.05 mm

Ultra-low footprints for fine-grain power management
Single layer ceramics also available with lower density
e Copper termination becoming more common as trend towards embedding continues



Key Enablers for Inserted MLCCs

Five Capacitor Construction Styles
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Barriers to achieve Thin MLCCs

, _ o Premature dielectric breakdown with thinner dielectric layers
Smaller components provide reduced volumetric efficiency

MLCC Active Volume vs. Case Size
60% +— g~
LA r
50% LT
- _. . ..t

‘:‘E - '\.. i
< . — a1
o 40% y = M-~
g Y~ - | | -
-— —— L]
S E ~u g
g 30% ~ *l
Q -
< .

20% — —_—

10% \‘I—

0% T T . T T T . . T .

2225 2220 1825 1812 1210 1206 0805 0603 0402 0201 01005 High_temperature and high operation Voltage;
Case Size 2 microfarad/mm?2 with <150 micron thickness
W % Active Volume, Electrodes in Active W % Active Volume, Electrodes Not in Active T ~85

Source: InEMI 2013 V<oV




Availability of Thin Inserted MLCCs
o I N G
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Availability of Thin Inserted MLCCs

Thickness 0.1 mm
Voltage

.03 puF/mm?

26-50 V

>100 V 5 nF/mm?

* High-density options using mostly X5R dielectric (only up to 85° C with strong dependence on temperature)

* Temperatures higher near IC
O Need to reduce thickness of more temperature-stable dielectrics
O Thermal management is critical



Functional Substrate Using Inserted Discrete
Capacitors

Method 1: Cavity insertion

Cavity formation Passives assembly Molding Via Formation and RDL
4>

Method 2: Overmolding

Lamination and assembly Overmoldmg> Via Formation and RDL

Result: Power-on-package solution




High-Frequency Decoupling with Inserted Caps

Silicon Die
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Min, Y., Olmedo, M.H., Radhakrishnan, K., Aygun, K., Embedded Capacitors in the Next Generation
Processor, in Electronic Components & Technology Conference. 2013.



Reliability Considerations

StandardProduct | g Sofl Termination |

J

Stress-absorbing soft termination (TDK)

e Aggravated reliability concerns with
embedding
e Susceptible to cracking due to CTE mismatch
e Higher ambient temperatures near IC

e Failure more expensive due to disposal of entire
substrate with passive

e Critical parameters for reliability p—
. layer
e CTE matching — /E;\/—\ p—
* High Flexural strength I =
e Operating lifetime data under accelerated == 7 I Liaver.
conditions ( | m

L — . ~
—_ 7 layer
Electrode

Open-mode failure with floating electrode design (AVX)



Formed Film Capacitors



Top electrode

Polymer Film Capacitors

Bottom electrode 2 ;

j_g umvias -

Ishi Hyoki

Patterned laminates from Oak-Mitsui

|J|T| Copper electrodes
Characteristics Condition Unit BC16TR
l Capacitance 1MHz pFlem? 1,700
Dk 1MHz N/A 30
Embedded capacitor core
Df TMHz N/A 0.019
3M. Electrical Performance, Miniaturization and EMI Advantages of Very High Capacitance Dielectric ‘ Micron
Density Laminates in PCBs and IC Packaging. in PCB West. 2011. Santa Clara, CA. Thickness Nominal Meter 16
IPC TM-650
. . _— Peel kN/m >0.7
e Polymer laminates with ferroelectric fillers eel Strength 249 0
e Can achieve dielectric constants of 20-30 Thermal Stress | 20sec @288C | times >10
* Upto ~ 6 nF/cm? for thinner layers Electrical 85C/85%RH/
P / Y Migration 35V R

e Capacitance limited due to epoxy matrix

* Therefore, mainly for high frequency filtering applications General characteristics of high D, film



Formed Ceramic Film Capacitors
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Formed Ceramic Thin-film Formation Process

.
Electrode patterning Lamination Patterning and Drilling Plating and further RDL
—

Top electrode(Cu)
‘ Thin-film of
Thickness | 0.6pm dielec';ric
S50um or less material
Bottom electrode(Ni)
Thin-film of dielectric material Ni
(Barium titanate series)
* Thin, flexible Ni carrier substrate e BST dielectric (max €=1000) e Panel-scalability

* Foil-transfer for easy processing * 30-50- nF/mm?



Silicon Trench Capacitors
—— Tripod

Silicon trench capacitors from IPDIA

 Silicon chip capacitors offer highest temperature capabilities and compatibility with
wafer-level integration (150° C — 250° C)

e Down to 80 um thickness
* Densities beginning to compete with MLCCs due to high-surface areas (500 nF/mm? max)



Embedded Electrolytic Aluminum Capacitors

High capacitance density ( > 2x that of MLCCs)

Conducting Polymer, ‘rs
Carbon ink, Ag ink Layers Capability Target
Rated voltage 2V-50V+
_lamiagking Capacitor size <Tmm
Etched Aluminum Cap thickness "'EDI.“T'
. Plated Cu

iy SR terminal Capacitance >100puF/cm?
DC leakage <50 nA/CV

Terminals formed by copper cladding and plating
Capacitors patterned onto transfer release film for

Via*

e s e e B e s panel-scale processing

200pm

O Arrayed sheets
Thin, planar format 0 Individual taping

Summey, B., KEMET Corporation. Embedding Aluminum Polymer Capacitors in APEC 2017.



Embedded Tantalum

Silicon Die

Thin-film design
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Improved capacitance density and frequency stability

Capacitor Type Operating Voltage (V) Thickness (mm) Volumetric Density 1 kHz (uF/mm?3) Volumetric Density 1 MHz (uF/mm3) (:E:g)
Thin-film 2 0.1 324 14.3 58
Thin-film 3 0.1 24.1 13.5 54
Thin-film 5 0.1 15.6 111 65

Commercial 2 1.9 7.88 2.36* 40
Commercial 3 1.9 5.53 1.66* 15
Commercial 4 0.9 8.68 Not reported 500
Commercial 6.3 0.6 11.87 Not reported 1500

*Specific values not provided, only general characteristics of the series



Roadmap of Formed Capacitors for Embedding

Board or package embedding;
I/0 decoupling; 100 MHz

Polymer film capacitors

Ceramic film capacitors

2-3 nF/mm?

Thin oxides

Silicon trench capacitors

Silicon capacitors Deep trench

0.08 pF/mm?

0.25 pF/mm? 0.3 uF/mm?

Ta or etched foil capacitors

Emerging Technologies

30-50 nF/mm?2
enabled by
dielectric thinning

20-30 nF/mm?

BaTiO3 film

Package embedding;
Core and I/0 decoupling; 100-500 MHz

Ultra-high surface area silicon

0.4 -0.8 pF/mm?

IVR; Embedded Pol

1-20 MHz
E;nnE)Ed: r?)(ljjs .

P Nanotech.
electrode > 5UF/mm?
1 uF/mm? H

IVR; Embedded Pol
1-5 MHz

Barrier-layer capacitors —

1-5 pF/mm?
- Early stage development




Summary

* New era of packaging involving embedding of passive components
e Reduce system size, lower parasitics, thinner modules
e High-frequency noise filtering or decoupling
e High-efficiency, fine-grain power management

* Inserted MLCCs becoming more available, enabled by thinner dielectrics
and improved process integration

e Silicon trench capacitors for improved thermal and voltage stability, and
on-chip integration

e For high-density, embedded electrolytic capacitors in development
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