

Peukert's Law for Supercapacitors: Physics and Application

Hengzhao Yang

New Mexico Institute of Mining and Technology May 5, 2020

Outline

- Introduction
- Applicability of Peukert's Law to Supercapacitors
 - Current Mode
 - Power Mode
- Application of Peukert's Law in Supercapacitor Discharge Time Prediction
 - Scenario 1
 - Scenario 2
- Dependence of Supercapacitor Peukert Constant on Voltage, Aging, and Temperature

Peukert's Law for Lead-Acid Batteries

Peukert's law relates delivered charge to discharge current [pkt]:

$$I^k t = Q_0$$

- $-Q_0$: nominal capacity rated at a particular discharge current
- I: actual discharge current
- t: actual discharge time
- − k: Peukert constant (k>1)
- Delivered charge depends on discharge current: the larger the discharge current, the less the delivered charge.

Peukert's Law for Supercapacitors

- Charge delivery capability
 - Relationship between delivered charge and discharge current during a constant current discharge process
- Energy delivery capability
 - Relationship between delivered energy and discharge power during a constant power discharge process
- Peukert's law in current/power modes
 - Applicability: current/power ranges [tpel_cap, tpel_phy, tia]
 - Application in supercapacitor discharge time prediction [jes]
 - Dependence of Peukert constant on terminal voltage, aging condition, and operating temperature [tpel_pkt, jes_pkt]

Applicability: Current Mode

- Delivered charge vs. discharge current (2.7 V/100 F supercapacitor sample, initial voltage 2.7 V, cutoff voltage 0.01 V)
 - 10-0.01 A: Peukert's law applies
 - 0.01-0.0025 A: Peukert's law does not apply
- Peukert's law
 - $-Q_0$: nominal charge
 - I: discharge current
 - − *k*: Peukert constant

$$I^k t = Q_0$$

Applicability: Power Mode

- Delivered energy vs. discharge power (2.7 V/100 F supercapacitor sample, initial voltage 2.7 V, cutoff voltage 1.35 V)
 - 13.5-0.0135 W: Peukert's law applies
 - 0.0135-0.00675 W: Peukert's law does not apply
- Peukert's law
 - $-E_0$: nominal energy
 - − P: discharge power
 - k: Peukert constant

$$P^k t = E_0$$

Physical Mechanisms: Supercapacitor Model

- Five-branch RC ladder circuit model (2.7 V/100 F supercapacitor)
- Three aspects of supercapacitor physics
 - Porous electrode structure: increase in delivered charge when discharge current decreases (time constants: 1.05, 10, 100, 1000, and 10000 s)
 - Charge redistribution: increase (charge transfer is unidirectional: from slow branches to fast branches)
 - Self-discharge: negligible for large currents (short term), decrease for small currents (long term)

Physical Mechanisms: Simulation Results

- Delivered charge vs. discharge current (2.7 V/100 F model, initial voltage 2.7 V, cutoff voltage 0.01 V)
 - 50-0.01 A: Peukert's law applies
 - 0.01-0.001 A: Peukert's law does not apply

Application Scenario 1: Setup

- Scenario 1: same discharge voltages for training and testing sets
- Setup to fit Peukert constant (applicable 10-0.01 A at 2.7 V)
 - Training set: 10, 1, 0.1, and 0.01 A
 - Testing set: 5, 0.5, and 0.05 A
- Fit function
 - − Q₀: charge delivered at 1 A

$$t = \frac{Q_0}{I^k}$$

Application Scenario 1: Results

Prediction error

$$\delta = \frac{|t_p - t_m|}{t_m} \times 100\%$$

- Rated setup
 - Rated capacitance
- Constant setup
 - Measured Q_0
- Reduced error

− Fit: ~20%

– Optimal: ~10%

	Rated	Constant	Fit	Optimal
k	1	1	1.021	1.024
Q_0 (C)	269	272.01	272.01	272.01
δ ₅ (%)	3.89	5.05	1.56	1.07
$\delta_{0.5}$ (%)	2.67	1.58	0.13	0.07
$\delta_{0.05}$ (%)	7.81	6.78	0.73	0.17
$\overline{\delta}$ (%)	4.79	4.47	0.81	0.44

Application Scenario 2: Setup

- Scenario 2: different discharge voltages for training and testing sets
- Setup to fit nominal charge and Peukert constant
 - Training set: 2.7, 2, 1.35, and 0.7 V
 - Testing set: 2.4, 1.7, and 1 V
- Fit function
 - Q₀: linear and quadratic
 - k: linear and piecewise linear

Application Scenario 2: Results

- Rated setup (δ_R)
 - Rated capacitance
- Constant setup (δ_C)
 - Measured/fitted Q₀
- Reduced error
 - Same nominal charge: error is approximately equal
 - Same Peukert
 constant: error varies
 significantly with
 nominal charge

,	Q_0	k	$\overline{\delta}_R$ (%)	Q_0	k	$\overline{\delta}_C$ (%)	Q_0	k	$\overline{\delta}_F$ (%)	$\overline{\delta}_O$ (%)
	R	1	10.20	M	1	10.65	M	Μ	2.75	2.66
							M	L	2.82	-
							M	P	2.69	-
				L	1	10.27	L	M	4.33	4.50
							L	L	4.75	-
							L	Р	4.62	-
S				Q	1	10.52	Q	Μ	3.45	3.42
							Q	L	3.60	-
							Q	P	3.49	-

Peukert Constant Dependence on Voltage

 Peukert constant decreases when initial voltage of discharge process increases (cutoff voltage is 0.01 V)

Peukert Constant Dependence on Aging

 Peukert constant increases when supercapacitor is more heavily aged (initial voltage is 2.7 V and cutoff voltage is 0.01 V)

Peukert Constant Dependence on Temperature

 Peukert constant increases when operating temperature is lower (initial voltage is 2.7 V and cutoff voltage is 0.01 V)

Simulation Results: Voltage Dependence

- Supercapacitor model
- Peukert constant dependence on initial voltage (cutoff voltage is 0.01 V)
- Effects of R_1 and C_1 on Peukert constant
 - k increases as R₁increases
 - k increases as C₁
 decreases

Simulation Results: Aging/Temperature Dependence

- Supercapacitor model
 - Upscaled: lighter aging or higher temperature results in larger capacitance and smaller resistance (e.g., 1.1)
 - Downscaled: smaller capacitance and larger resistance (e.g., 0.9)
- Peukert constant dependence on normalized capacitance

Physical Mechanisms: Effects of DOD on Peukert Constant

- Lower branch capacitor DOD (depth of discharge) results in larger Peukert constant: supercapacitor is less responsive or more relaxed
- Lower initial voltage (top): lower branch capacitor DOD
- Heavier aging/lower temperature (smaller normalized capacitance) (bottom): lower branch capacitor DOD

References

- [pkt] D. Doerffel and S.A. Sharkh, "A critical review of using the Peukert equation for determining the remaining capacity of lead-acid and lithium-ion batteries," Journal of Power Sources, vol. 155, pp. 395-400, 2006.
- [tpel_cap] H. Yang, "Estimation of supercapacitor charge capacity bounds considering charge redistribution," IEEE Transactions on Power Electronics, vol. 33, no. 8, pp. 6980-6993, 2018.
- [tpel_phy] H. Yang, "Effects of supercapacitor physics on its charge capacity," IEEE Transactions on Power Electronics, vol. 34, no. 1, pp. 646-658, 2019.
- [tia] H. Yang, "Peukert's law for supercapacitors with constant power loads: applicability and application," IEEE Transactions on Industry Applications, vol. 55, no. 4, pp. 4064-4072, 2019.
- [jes] H. Yang, "Application of Peukert's law in supercapacitor discharge time prediction," Journal of Energy Storage, vol. 22, pp. 98-105, 2019.
- [tpel_pkt] H. Yang, "Dependence of supercapacitor Peukert constant on voltage, aging, and temperature," IEEE Transactions on Power Electronics, vol. 34, no. 10, pp. 9978-9992, 2019.
- [jes_pkt] H. Yang, "A comprehensive study of supercapacitor Peukert constant dependence on voltage," Journal of Energy Storage, vol. 27, pp. 101004:1-101004:10, 2020.

Bio

Hengzhao Yang

- Assistant Professor
- Department of Electrical Engineering
- New Mexico Institute of Mining and Technology

Research Interests

- Supercapacitor Modeling and Characterization
- Design and Control of Energy Storage Systems
- Power Electronics for Energy Storage Applications

Contact

- Email: <u>hengzhao.yang@nmt.edu</u>
- Homepage: http://www.ee.nmt.edu/~yang/

