

HIGH FREQUENCY POWER FILM HARMONIC FILTER CAPACITORS

CORNELL DUBILIER ELECTRONICS, INC.

HECTOR A CASANOVA

APEC 3/16/19

LET ME INTRODUCE MYSELF

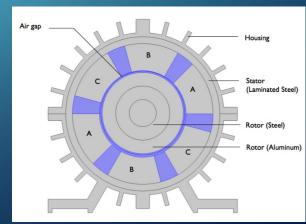
- Hector Casanova
- Director of Engineering for Cornell Dubilier Electronics, 13 Years
 - New Bedford MA
- 38 Years film capacitor experience
 - Engineering and plant management
- BSEE Fairfield University / Bridgeport Engineering Institute
- MBA University of Phoenix

FOCUS ON AC POWER FILM CAPACITORS FOR HIGH FREQUENCY AC HARMONIC FILTERING

- Larger AC power film capacitors
- Dielectric Metalized polypropylene
- Enclosed in large aluminum cases
- Single or 3 Phase
- Capacitance 50 to 300µF (460µF special)
- Voltage up to 1000 Vac
- Protected / UL Approved

PRESENTATION DISCUSSION TOPICS INDUSTRY TRENDS DRIVING THE NEED FOR HIGHER FREQUENCY HARMONIC FILTER CAPACITORS

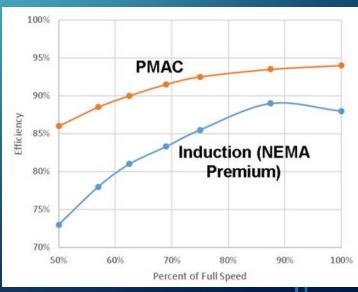
- Applications for AC harmonic filter capacitors, focus on variable frequency drives
- Conventional Induction motors used with VFD's
- Permanent Magnet Motors PMM paired with variable frequency drives VFD
- Evolution of switching technology in AC motor drives
- Passive Harmonic filter design
- Effects on capacitor design
- Design considerations for higher frequency capacitors
- Future trends for higher frequency applications


APPLICATIONS FOR AC HARMONIC FILTER CAPACITORS

- Power Inverters
- Deep well pumps
- Conveyors
- HVAC
- Ventilation
- Process controls
- Renewable energy inverters
- Variable frequency power drives focus of presentation

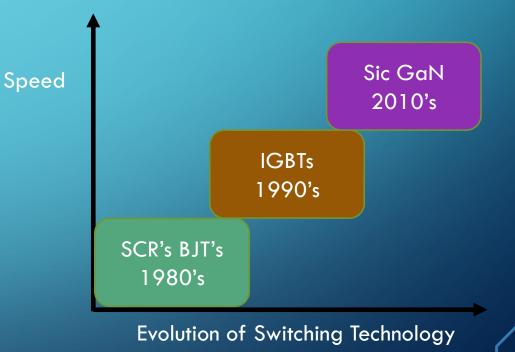
CONVENTIONAL INDUCTION MOTORS USED WITH VFD

- NEMA rated Induction motors
 - Current in the stator produces torque
 - Operate at lower frequency <3 kHz
 - Require large filter
 - Inductor / capacitor
 - Heavier
 - Larger footprint
 - Energy inefficient at higher frequency due to high losses



INDUSTRY TREND PERMANENT MAGNET MOTORS IMPROVED EFFICIENCY

- Motors, permanent magnet v. induction motors
 - Greater Efficiencies, energy savings
 - Higher power densities
 - Improved control
 - Overall cost, over the life of system is lower
- Smaller, lighter systems
- Smaller sinewave filters



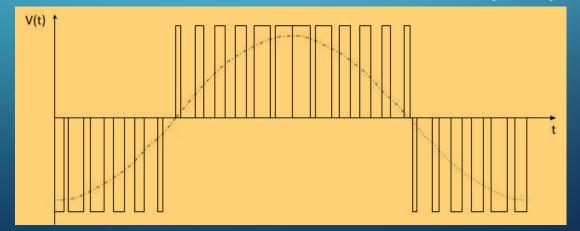
PERMANENT MAGNET MOTOR PMM DRIVE CHALLENGES / BASICS

- Higher up front cost
- Compatible drives needed
 - Higher frequencies required to achieve same speeds
- VFD and sinewave filter selection critical to protect the motor
 - PMAC motors are sensitive to higher temperatures which cause demagnetization
 - Optimized filters perform best
- Higher switching frequencies, >4 kHz
- Higher fundamental frequency >150 Hz

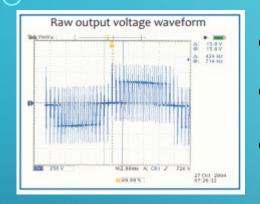
INDUSTRY TRENDS EVOLUTION OF SWITCHING TECHNOLOGY IN AC MOTOR DRIVES

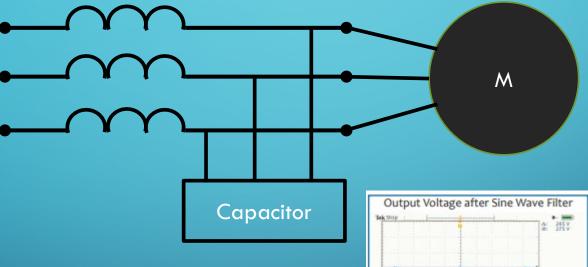
- Switching devices
 - SCR's & BJTs
 - IGBT's 20 kHz switching frequency
 - Silicon carbide (SiC) and gallium nitride (GaN) power switches v. IGBT
 - Higher frequency drives PWM
 - 50Khz to 200Khz switching speeds
 - Smaller sinewave filters
 - Efficiencies, energy savings
 - Higher power densities
 - Improved control
 - Lower overall cost

HIGH FREQUENCY PULSE WIDTH MODULATION PWM DRIVES CHALLENGES / BASICS


- Much higher cost (SiC, GaN)
- VFD and sine wave filter selection critical to protect the motor
 - Optimized filters required
- Higher switching frequencies, >20 kHz
- Higher fundamental frequency >300 Hz

HARMONIC SINE WAVE FILTER TYPICAL APPLICATION




VFD output

Clean motor input power

SINE WAVE FILTER

Inductor / Capacitor "trap" filter
Material selection designed to
operate at higher frequency

Motor protection
Increased motor
reliability
Reduction in motor
heating
Reduction in motor
audible noise

FUNDAMENTAL CAPACITOR PERFORMANCE REVIEW

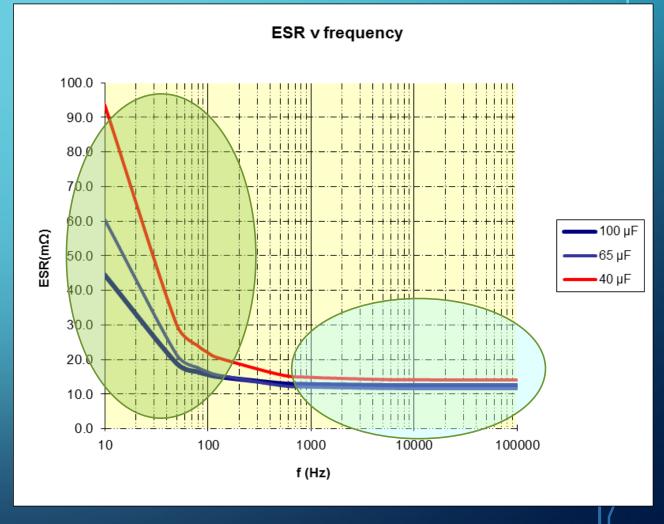
POWER LOSSES — I² ESR

ESR = $\tan \delta$ / omega * C

 $ESR = tan \delta / 2 * PI * f * C$

Dielectric losses are high at low

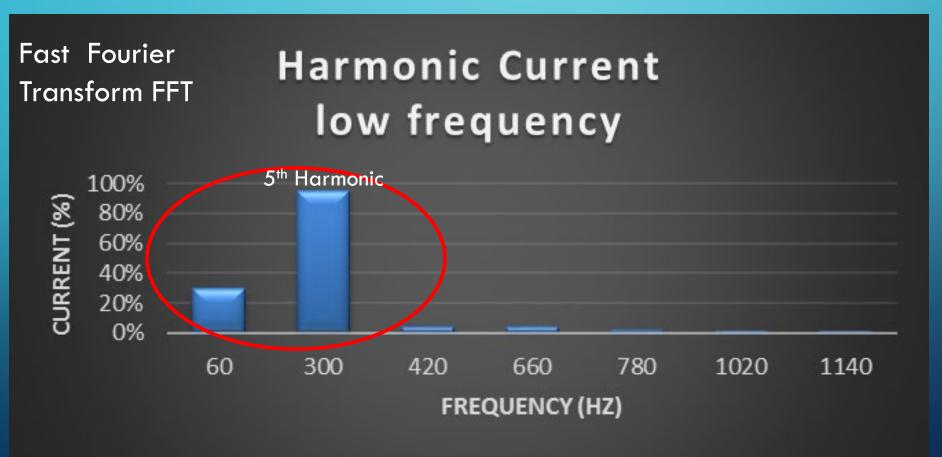
frequencies


Become ohmic losses Rs at higher frequencies

ESR - Effective Series Resistance

Tan delta – DF

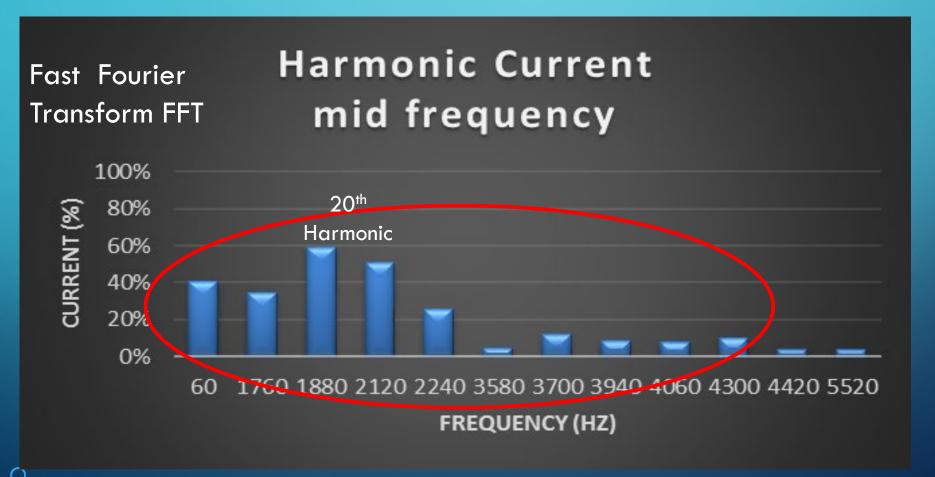
C – Capacitance


Rs – Ohmic losses

SINE WAVE FILTER COMBINATIONS & FFT ANALYSIS

- Traditional, with off the shelf filter
 - Induction motor / VFD
- Mid Frequency, customized
 - PMM / VFD
- High Frequency, specialized
 - PMM / HF VFD

SO WHAT DOES THIS MEAN FOR THE CAPACITOR? HARMONIC CONTENT FROM **TRADITIONAL** SYSTEMS

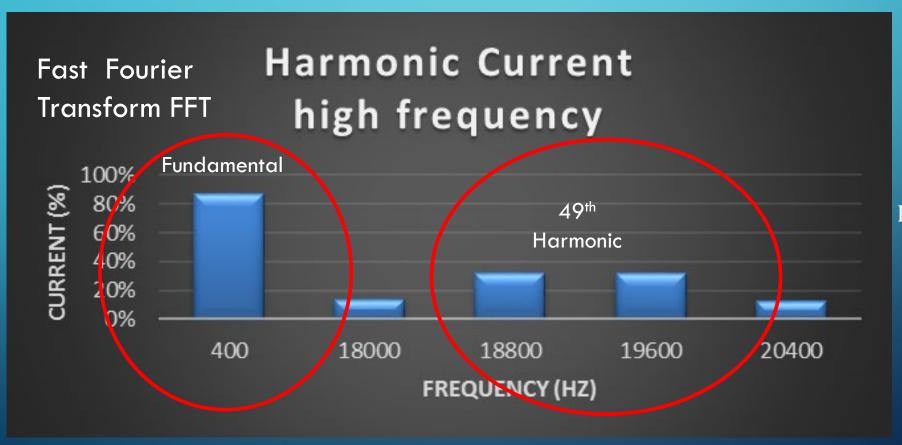


$$ESR = \frac{\tan \delta}{2 * \pi * f * C}$$

SO WHAT DOES THIS MEAN FOR THE CAPACITOR? HARMONIC CONTENT FROM **TRADITIONAL** SYSTEMS

- Predominantly fundamental and low frequency harmonic content
 - 60 Hz and 300 Hz (5th Harmonic)
- Capacitor will need to handle mainly dielectric losses
- Results typically in larger capacitor to handle the power losses

SO WHAT DOES THIS MEAN FOR THE CAPACITOR? HARMONIC CONTENT FROM **PMM** & **VFD** SYSTEMS



$$ESR = \frac{fan \ o}{2 * \pi * f * C}$$

SO WHAT DOES THIS MEAN FOR THE CAPACITOR? HARMONIC CONTENT FROM PMM / VFD SYSTEMS

- Mainly fundamental and mid frequency harmonic content < 3 kHz
- Some higher frequency content is present ~ 2 kHz
- Capacitor will need to handle mostly dielectric losses and some higher frequency ohmic losses
- Results typically in larger capacitor values

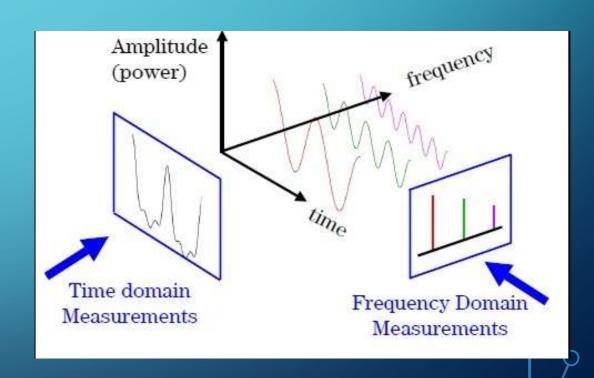
SO WHAT DOES THIS MEAN FOR THE CAPACITOR? HARMONIC CONTENT FROM HIGH FREQUENCY VFD'S

$$ESR = \frac{\tan \delta}{2 * \pi * f * C}$$

SO WHAT DOES THIS MEAN FOR THE CAPACITOR? HARMONIC CONTENT FROM **HIGH FREQUENCY VFD'S**

- Fundamental frequency shifts higher to 300 Hz or 400 Hz
- Higher frequency harmonics are present ~ 20 kHz
- Capacitor will need to cope with a combination of dielectric and ohmic losses
- Capacitance values are typically lower than traditional filter capacitors

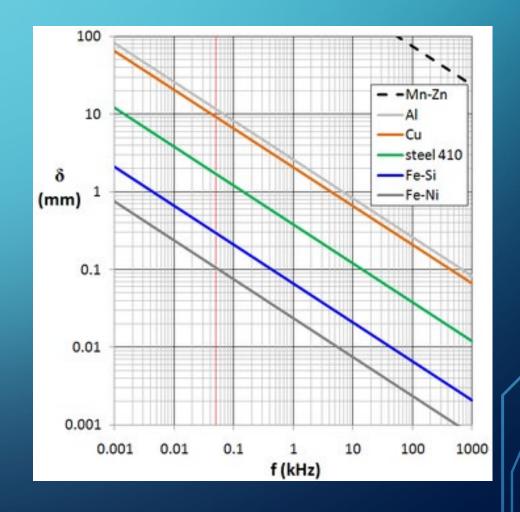
CAPACITOR DESIGN CHALLENGES HIGH FREQUENCY


- Standard low frequency capacitors
- Harmonic content feedback not given or understood
- Losses due to skin effect
- Ohmic losses
- Dielectric losses
- Misapplication

STANDARD HARMONIC CAPACITOR LOW FREQUENCY < 3 KHZ HARMONIC CONTENT

- Standard construction
- Ferrous hardware
 - Steel covers
 - Steel terminals
- Capacitor internal section design not so critical
- Not worried about skin effect

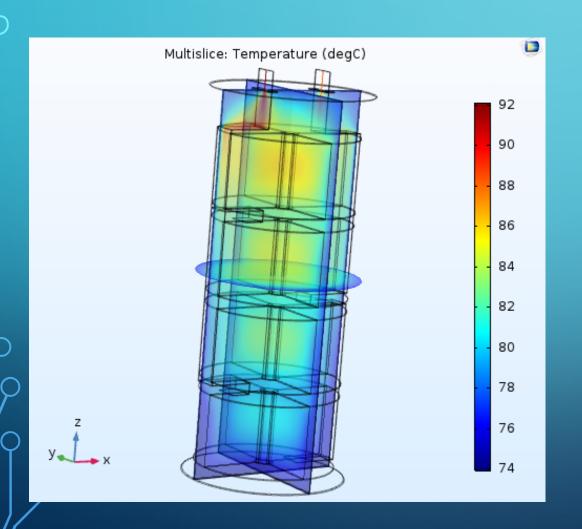
HARMONIC CONTENT FEEDBACK SO HOW MUCH POWER SHOULD THE CAPACITOR BE REQUIRED TO HANDLE?

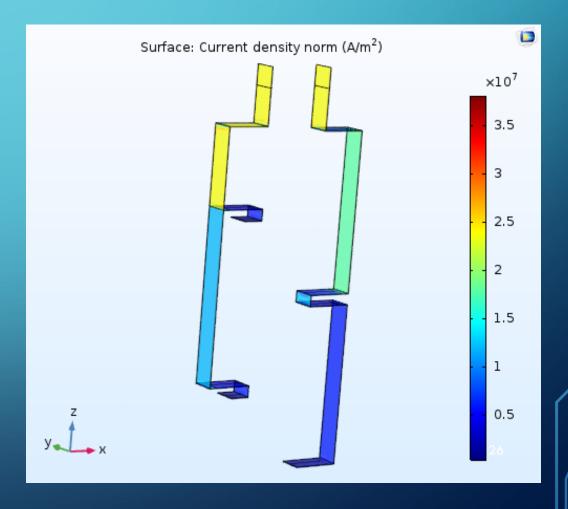

- Low frequency, mixed frequency, or high frequency ?
- Fast Fourier Transform FFT
 - Converts signal from Time Domain to Frequency Domain
 - Shows designer where the harmonic frequencies are and amplitudes
- Keep power generated below capacitor max power dissipation

SKIN EFFECT

- Losses due to skin effect
 - Conductor resistance increases with frequency
- Non-ferrous hardware
- Selection of internal connections
 - Wider
 - Litz wire
 - Stranded wire

SKIN EFFECT VARIOUS METALS Skin depth in (mm)




HIGH FREQUENCY CAPACITORS CAREFULLY CONSIDER OHMIC LOSSES

- Reduction of metallic resistance throughout all connections
 - Metallization —
 - optimal end spray connection / / /
 - lead attach —
 - lead cross sectional area
 - lead geometry \ \ \
- Non ferrous material throughout
- COMSOL model

HIGH FREQUENCY CAPACITORS CAREFULLY CONSIDER OHMIC LOSSES THERMAL MODEL

MISAPPLICATION

- Use standard frequency rated capacitors in high frequency applications
- Thermal overheating of ferrous terminations due to skin effect
- Overheating due to excessive watts lost
 - Increased temperature = reduced life
- Forced to use larger and de-rated
 capacitors in series parallel configuration
- Fewer high frequency capacitors needed

HIGH FREQUENCY CAPACITOR CONSIDERATIONS

- Keep Rs as low as possible
- Fast Fourier Transform of harmonic content for power loss analysis
 - Shows designer what the harmonic frequencies are and amplitudes
- Power calculation critical at higher frequencies
 - Fundamental frequency drives dielectric losses
 - Harmonic frequencies drive resistive losses
- Voltage and current waveforms
- Application temperature

RECAP

- Higher frequency power film ac capacitors market driven
 - Higher switching speed semiconductors
 - The move to permanent magnet motors
 - Efficiencies, overall costs, and smaller foot prints
- Capacitor
 - FFT of waveform to be filtered
 - Non-ferrous hardware
 - Keep generated power losses safely below power handling capability

FUTURE TRENDS HIGHER FREQUENCY CAPACITORS

- Lower inductance necessary for higher switching frequency
 - Capacitor methods for cancelling parasitic inductance
 - Bus bar mounting system reducing inductance
- Smaller, more compact capacitors
 - Less capacitance required at the higher frequencies
- Higher temperature
 - Compactness brings capacitor closer to high temperature power electronics
 - Newer high temperature dielectrics required to perform in AC circuits under development

Thank you for your attention