

## Difference Between Traditional Aluminum Electrolytic and Polymer Capacitors



## APEC 2018 in San Antonio Capacitor Workshop



**Frank Puhane** 

Team leader
Technical Engineering

## **Short Introduction of Today's Presenter**



### **Frank Puhane**

Technical Project Engineer & Team Leader Technical Engineering eiCap Capacitor Division





+49 7942945 4033



frank.puhane@we-online.com



www.we-online.com

#### **Background:**

- More than 10 years of work experience in electronics industry
- Background in Electronics, Power Supply Development and formerly worked as Field Application Engineer
- In charge for technical product services and application support of capacitor division at WE

## Agenda

- Construction of Aluminum Capacitors
- Equivalent Circuit
- Self Healing Capabilities
- Expected Lifetime Calculation









# CONSTRUCTION OF ALUMINUM CAPACITORS



## **Construction of Aluminum Capacitors**



## **Construction of Aluminum Capacitors**

- Anode foil low rated voltage less roughness
- Surface treatment (electrolysis)
- Minimum foil thickness => mechanical and voltage strength





Anode foil high rated voltage high roughness



## **Construction of Aluminum Capacitors**

- Impregnated anode foil
- Similar winding process
- Usage of Monomer
- Drying and aging process up to 8hrs





## **EQUIVALENT CIRCUIT**



## **Equivalent Circuit – ESR**

- ESR causes heat generation
- Max. allowable ∆T due to self-heating
- Maximum ESR normally specified at 120Hz or 100kHz, @20°C
- ESR can be calculated like following:

$$ESR = \frac{\tan \delta}{2 * \pi * f * C} = \tan \delta * X_C$$

$$X_C = \frac{1}{2 * \pi * f * C} = \frac{1}{\omega * C}$$



Quality of mechanical connections e.g. the pin stitching will massively influence the ESR value

## **Equivalent Circuit – ESR**

- Ripple current is the AC component of an applied source (SMPS)
- Ripple current causes heat inside the capacitor due to the dielectric losses
- Caused by the changing field strength and the current flow through the capacitor





Electrolytic conductivity (reciprocal of electrolytic resistivity) of Aluminum Polymer caps a hundred times higher compared to Electrolytic: 4S/cm to 0.04S/cm

## **Equivalent Circuit – ESR & Ripple Current Capabilities**

- Aluminum Electrolytic 10µF, 25V (865060440001)
- ESR@100kHz ~ 2.2Ω
- Ripple Current rating@100kHz ~ 90mA



Check the datasheet for the frequency and ripple current ratings, as well as possible environmental restrictions

- Aluminum Polymer 10µF, 25V (875105544001)
- ESR@100kHz ~ 21.6mΩ
- Ripple Current rating approx. 2.2A





## **Equivalent Circuit – Impedance Z**

• 
$$Z = \sqrt{ESR^2 + (X_L - X_C)^2} = \sqrt{ESR^2 + \left((2 * \pi * f * ESL) - \left(\frac{1}{2 * \pi * f * C}\right)\right)^2}$$







## **Equivalent Circuit – Impact of Form Factor – ESL**



#### N – number of windings

ΝĮ

**ESL** 

- Basically same capacitance and voltage values
- Different DxL relation
- Similar effective foil size
- Less foil windings
- Similar behavior to coils





If low ESL is most important for your application, but there are height restrictions, its possible to bent the pins by 90° and use in parallel to PCB, like mainly in flat screens

## **Equivalent Circuit – Leakage Current**



WE- P/N: 865080143009

220µF; 6.3V; 2,000h; 105°C

#### Measurements in nA @0:00 - 6:00 min

| 7 | Para Salandara |      |     |     |     |     |
|---|----------------|------|-----|-----|-----|-----|
|   | 1              | 2    | 3   | 4   | 5   | 6   |
| 1 | 1720           | 1134 | 907 | 782 | 712 | 688 |

#### Measurements in nA @56:00 - 60:00

| 1   |     | R- IV |     | 25  |
|-----|-----|-------|-----|-----|
| 56  | 57  | 58    | 59  | 60  |
| 405 | 371 | 414   | 420 | 410 |

#### Leakage current VS Test time



----865080143009\_6\_UR



## **Self – Healing Capabilities**



- Aluminum Electrolytic capacitors possess self healing capabilities
- Self healing means recover the thickness of the AL<sub>2</sub>O<sub>3</sub> dielectric layer
- Thickness of dielectric layer important for the capacitor's performance
- Thickness will be reduced by:
  - Time chemical reaction (oxidation) will reduce the dielectric layer while the capacitor is not in operation
  - Overvoltage
  - Wrong polarity
- Thickness will be increased in operation or with forming (low voltage applied with current limits controlled)

## Self – Healing Capabilities – Comparison



- Aluminum Electrolytic
- Liquid electrolyte contains water
- Oxygen ions will react with AL
- Increase the dielectric layer
- Capability will be reduced over time



- Aluminum Solid Polymer
- Solid Polymer inside the element
- Limited air between the can & the element
- Very limited self-healing possible



## **EXPECTED LIFETIME CALCULATION**



## **Expected Lifetime Calculation**

#### Aluminum Electrolytic

$$L=L_0*2^{\frac{T_0-T_x}{10}}$$

L = expected lifetime

L<sub>n</sub>: Specified lifetime

T<sub>a</sub> =temperature of application

T<sub>0</sub>: Max. Operating Temperature [°C]

T<sub>x</sub>: Ambient temperature [°C]

Aluminum Polymer

$$L = L_0 * 10^{\frac{T_0 - T_x}{20}}$$

L = expected lifetime

L<sub>0</sub>: Specified lifetime

T<sub>a</sub> =temperature of application

T<sub>0</sub>: Max. Operating Temperature [°C]

T<sub>x</sub>: Ambient temperature [°C]

## Comparison of Expected Lifetime: Aluminum vs. Polymer Capacitor



| Application<br>Temperature | AL Polymer<br>Cap | AL<br>Electrolytic<br>Cap | Factor<br>Poly vs. Alu | Alu-Cap   | Factor<br>Poly vs. Alu |
|----------------------------|-------------------|---------------------------|------------------------|-----------|------------------------|
| 105 °C                     | 2.000 h           | 2.000 h                   | 1,00                   | 5.000 h   | 0,40                   |
| 95 °C                      | 6.300 h           | 4.000 h                   | 1,58                   | 10.000 h  | 0,63                   |
| 85 °C                      | 20.000 h          | 8.000 h                   | 2,50                   | 20.000 h  | 1,00                   |
| 75 °C                      | 63.000 h          | 16.000 h                  | 2,94                   | 40.000 h  | 1,58                   |
| 65 °C                      | 200.000 h         | 32.000 h                  | 5,25                   | 80.000 h  | 2,50                   |
| 55 °C                      | 630.000 h         | 64.000 h                  | 8,84                   | 160.000 h | 3,94                   |
| 45 °C                      | 2.000.000 h       | 128.000 h                 | 14,62                  | 320.000 h | 6,25                   |

# Comparison of Expected Load Life: Aluminum vs. Polymer Capacitor



All ratings over 10 years are very much theoretically, most AL Electrolytic Cap manufacturer may only expect lifetime calculations up to 10-15 years



### Conclusion

| Application           | Aluminum Electrolytic | Aluminum Solid Polymer |
|-----------------------|-----------------------|------------------------|
| Filter                |                       |                        |
| DC-DC Converter       |                       |                        |
| Battery powered appl. |                       |                        |
| Low / green energy    |                       |                        |
| Low temperature       |                       |                        |
| High temperature      |                       |                        |
| Audio                 |                       |                        |
| Higher vibration      |                       |                        |

## Thanks for your attention!

