

The University of Nottingham

DC Link Capacitors for an Electric Superbike

Professor Pat Wheeler University of Nottingham

email: pat.wheeler@nottingham.ac.uk

Electric Vehicles – The Beginning

1828: First recorded Electric vehicle Hungarian, Ányos Jedlik

1839: Electric-powered carriage Robert Anderson of Scotland

1912: peak in 20th Century production Electrical cars in early 1900s had advantages: low noise, no hand cranking engines and no adding water to steam engines

1928: all production ended due cost and range Electric cars costs \$2000 Petrol cars cost £600!

Electric Superbike Racing The University of Nottingham Racing Team

- Capable of speeds up to 200mph (320km/hr), weighs 285kg!
- 720V DC supply, about 25kWhr of stored Energy, peak power of ~200kW
- MotoE European Race Series Champions in 2015 and 2016
- Podium finish at the Isle of Man TT Zero in 2016, 2017 and 2018
- Faster around a track than a BMW S1000RR!

Electric Superbike RacingThe University of Nottingham Racing Team

Racing since 2014

Why race?

Promotion of Electric Vehicle Technology

- Motor sport is a good way to raise awareness of new technology
- TV and Media coverage is essential

Pushing the boundaries of technology

- Race bikes can be used to trial and test new technologies
- Possible to take far more risks and find limits practical limits

Testing new ideas and challenging regulations

- Feet forward bikes are allowed improved aerodynamics
- Transportation of Lithium-ion batteries by Air?

Electric Superbike Racing

The University of Nottingham Racing Team

Winning Races

 MotoE European Champions (track series): 2015 and 2016

• TT Zero: 3rd Place: 2016 and 2017

2nd Place in 2018 (119.3 mph)

Electric Superbike Racing

The University of Nottingham Racing Team

Winning Races

 MotoE European Ch (track series): 2015

TT Zero: 3rd Place: 2

The Isle of Man TT

Electric Superbike Racing

The University of Nottingham Racing Team

Winning Races

 MotoE European Champions (track series): 2015 and 2016

• TT Zero: 3rd Place: 2016 and 2017

System Overview

System Design

System Design

Optimisation: System Performance

Measured and simulated lean angle

Power losses – modelled

Motor: New Design

- Vacoflux VX48 core, EP3200 potting compound, Laminated N48SH magnets
- Designed to achieve 28kg, 300Nm, 8000rpm
 - Optimised for Isle of Man TT Course
- Designed, built and tested for the electric superbike
 - Duty cycles and use case very well defined allows a full optimisation

Battery Design

- Weight and Volume are critical to the design and endurance of the bike
 - Maximum speed is not the issue for the battery
 - Speed is only really an issue for the rating of the motor and controller
- Critical factors
 - Energy storage per kg and per litre
 - Temperature rise during the race
- Cost and lifetime are not critical for race bikes!
 - 25 Charges maximum requirement for the whole season

Power Converter: Design Choices

- Multiple converter designs have been used since 2015
 - Various topology choices, linked with motor design
 - Optimisation has to be linked to optimisation of the motor
- Current design
 - 750V DC, 1000Arms, SiC MOSFETs
 - Water cooled with a dedicated radiator
 - Power Electronic Converter located under the saddle

2-level Inverter

Dual-bridge Converter

3-level NPC Converter

Power Converter: Capacitor Requirements

- Lithium Batteries tend to heat up more with higher frequencies, up to a point
 - Battery lifetime reduces with temperature (not a problem for a race bike!)
 - Critical frequencies can include typical power electronic converter switching frequencies
 - In a good design most of the ripple associated with the converter switching frequency goes through the capacitor

2-level Inverter

Capacitors

- A known life-limiting technology in many power electronic applications
- Electrolytic capacitors are particularly prone to ageing which is very sensitive to temperature and bias
 - "Drying out" of electrolyte leads to reduction of capacitance
 - Storage without bias leads to gradual loss of dielectric effectively leading to a short circuit
 - Periodic application of bias needed if extended storage is planned

Integrated Passives

- Ceramic capacitor technology is compatible with temperature range
 - COG dielectrics are low loss and up to 0.03J/cm³
 - X7R dielectrics are higher loss and up to 0.4J/cm³
 - Good CTE match to module substrate reduces cracking
- Commutation loop decoupling can be achieved by placing ceramic chips across substrate pads
- Some care is needed to avoid unwanted interaction of internal and external capacitance – more internal capacitance not always better!

Impact of Integrated Capacitance

- Voltage overshoot is significantly reduced by incorporating decoupling capacitance on substrate
- Note additional oscillations introduced between internal decoupling and external decoupling capacitances

100A commutation cell with stray inductance ~100nH. Left figure without internal decoupling, right figure with internal decoupling of 200nF

Capacitor Technologies – Performance dictated by Dielectric

• Electrolytic:

- · highest energy density,
- low power density,
- limited temperature range (at best -40 to 105°C),
- high losses and poor lifetime

Metallised polymer film:

- low energy density (0.01~0.1 J/cm³),
- high power density,
- limited temperature range (typically -40 to 105°C),
- low losses and long life

Multi-layer ceramic:

- low to moderate energy density (0.1~1 J/cm³),
- high power density,
- wide temperature range (-60 to 125°C),
- low to moderate losses
- · long life but mechanically fragile.

Degradation of Film Capacitors

- Pulse discharge testing of film capacitors at extreme temperatures
- Self healing leads to gradual reduction in capacitance with time
- Lower temperatures exacerbate wear-out

Summary

- Racing is a great way to enthuse students and generate impact
- With electric racing it is still possible to compete at the highest level as a small team by being innovative
- Simulation is able to accurately predict the performance of a bike in racing environment
- Good power converter design is required for performance/reliability and to minimise battery temperature
- Future developments:
 - Motor design
 - Battery sizing
 - Power Converter cooling
 - Aerodynamics
 - Chassis dynamics

-

TT Zero 2018

