

High Voltage in Aluminum Capacitors

APEC 2018 in San Antonio Capacitor Workshop

Pierre Lohrber

Division Manager eiCap - Capacitors

Short Introduction of Today's Presenter

Pierre Lohrber
Division Manager
eiCap Capacitor Division

+49 7942945 5885

Pierre.lohrber@we-online.com

www.we-online.com

Background:

- More than 25 years of work experience in electronics industry
- Background in Management & Business Administration,
 Electronics, Global Supply Chain Management and Supply
 Chain Risk Management
- In charge for strategic conception & development of capacitor division at WF

Agenda

Aluminum Base Foil

 Differences Between Low Voltage & High Voltage

 High Voltage Aluminum Polymer Capacitors?

Future Developments

Aluminum Base Foil

Everything starts with the Aluminum Foil

- From raw aluminum to edged anode foil
- Process time varies between low voltage & high voltage

Importance of the Base Aluminum Foil

- Surface treatment (electrolysis)
- Anode foil low rated voltage looks like a sponge or coral
- Anode foil high rated voltage looks like mountains / stalagmites

Minimum foil thickness => mechanical and voltage strength

Importance of the Base Aluminum Foil

- High voltage results in high roughness
- Limitation is residual thickness
- Forming voltage for a 550V capacitor
 - Up to 850V
- Fine surface etching
 - Accomplished mainly by AC electrolysis
- Tunnel etching
 - Accomplished mainly by DC electrolysis

Low Voltage vs. High Voltage Foil

Difference between Low Voltage & High Voltage Foil

Low Voltage Anode Foil

High Voltage Anode Foil

After edging, before forming

After forming, oxide layer

- Aluminum Foil after forming process
- Existing dielectric layer AL₂O₃

Difference between Low Voltage & High Voltage Foil

Low Voltage Anode Foil

- Controlled hole size / porosity to enlarge the surface
- Allow thin oxide layer for low voltage capabilities without closing the holes
- Final hole diameter incl. the oxide layer has to allow an influx of the electrolyte to use and activate the surface area

 Hole / opening of the tube too small – oxide layer will close the hole, low effectiveness

 Hole / opening of the tube in right size – oxide layer will be formed inside the whole tube and will increase the surface area significantly, high effectiveness

Difference between Low Voltage & High Voltage Foil

High Voltage Anode Foil

- Controlled porosity and minimum base foil thickness
- Allow thicker oxide layer for high voltage capabilities without damaging the base film

- Surface of the high voltage foil with narrow aluminum spikes, low effectiveness as the oxide layer will cover more than just one spike
- Maybe same oxide layer thickness but less C per mm²

Surface are with spikes that allow a more thick oxide layer, high effectiveness for higher working voltage capabilities

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution

Working Voltage Surge Voltage Forming Voltage

Working Voltage vs. Surge Voltage vs. Forming Voltage

- An aluminum capacitor will be rated with its working voltage
 - Headline e.g. 63V 220μF 105°C
 - Cap should not applied to voltage above working voltage frequently or long time to avoid any overheating or fatal damage
- A surge impulse however may not damage the cap depending on its energy
 Electrical Properties:
- See datasheet surge voltage values
- Approx. U_S = 1.1 to 1.2xU_R

Properties	Test conditions		Value	Unit	Tol.
Capacitance	0.25 V/ 120 Hz/ +20 °C	С	820	μF	±20%
Rated Voltage		U _R	250	V (DC)	max.
Surge Voltage		U _S	288	V (DC)	max.
Leakage Current	5 min./ +20 °C	I _{Leak}	1358	μA	max.
Dissipation Factor	0.25 V/ 120 Hz/ +20 °C	DF	15	%	max.
Ripple Current	120 Hz @ 105 °C	IRIPPLE	2.78	Α	max.

Working Voltage vs. Surge Voltage vs. Forming Voltage

- No standard for the ratio between U_s & U_R
- Check and compare competitor's datasheets
- Forming voltage however is the voltage applied to the anode foil during forming process
- Form the AL₂O₃ layer
- U_F approx. 1.5x U_R

Inside Voltage Handling

Regular Voltage Handling Between Anode & Cathode

Oxide Layer Reduction

2018.03.03 | eiCap | Public | APEC 2018 Industry Session

17

Oxide Layer Importance

- Much higher
 voltage across
 the electrolyte to
 the cathode foil
- Electrolyte
 (chemicals with
 water inside) will
 start boiling
 immediately
- Gas will escape abruptly – by explosion
- Vent will open

Oxide Layer Importance

- In a working system the oxide layer will more or less remain its thickness and function
- A reduced oxide layer can be refreshed with controlled scenario low voltage applied / ramp up
- Oxygen inside the electrolyte will allow a self-healing of the AL₂O₃ layer over time
- The higher the working voltage the more thicker the oxide layer needs to be
- There is a correlation between forming voltage and thickness of the dielectric layer – about 1V to 1nm AL₂O₃ layer construction

High Voltage Polymer?

High Voltage Polymer?

- High voltage may harm the polymer structure
- No or very limited self-healing capabilities of solid polymer capacitors
- No oxygen because no electrolyte inside the solid polymer tape capacitor
- Solution could be a Hybrid Polymer Capacitor
- Polymer flakes in a liquid will create a combination advantages from electrolyte (self-healing capabilities) and higher voltages with lower ESR than regular electrolytic
- R&D already has a 400V polymer hybrid type under test conditions
- Highest possible voltage of electrolytes still "far" away from polymer capabilities

Future Trends

Future Developments

- Increasing market requirements for higher voltages
- New Energy power converters
 - 550WV to 750WV
 - Close to 1kV FV
- More stable electrolytes
- High charge & discharge currents
- Long lifetimes with 20,000 up to 50,000hrs
- Temperature stability up to 150°C

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

High vibration resistance

2010.00.00 | Gloup | 1 ubite | 7tt 20 2010 industry 0000101

Thanks for your attention!

